文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

二维超晶格纳米催化剂开启多模态能量转换驱动的催化治疗。

Two-dimensional superlattice nanocatalysts unlock multimodal energy transformation-driven catalytic therapy.

作者信息

Zhang Shanshan, Kong Xiangyu, Xu Ximo, Hua Qing, Xu Wenwen, Chen Liang, Zhou Jianqiao, Chen Yu

机构信息

Department of Ultrasound, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, P. R. China.

Department of General Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080, P. R. China.

出版信息

Nat Commun. 2025 Jul 1;16(1):5822. doi: 10.1038/s41467-025-61041-4.


DOI:10.1038/s41467-025-61041-4
PMID:40593798
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12217262/
Abstract

While the development of nanochemistry has spurred the emergence of catalytic nanomedicine, nanocatalysts with multifaceted catalytic properties for therapeutic applications remain underexplored. Here, we present two-dimensional BiCuSeO nanosheets (BCSO NSs) as the superlattice nanocatalyst for multimodal energy transformation-driven nanocatalytic therapy. Benefiting from the intrinsic layered heterostructures and a narrow bandgap, BCSO NSs feature photothermoelectric and sono-piezoelectric catalytic effects, as well as enzyme-mimicking catalytic activities. Theoretical calculations reveal that the internal electric fields within superlattice nanostructures contribute to the rapid separation and suppressed recombination of charge carriers. Consequently, BCSO NSs enable controlled reactive oxygen species generation under the second near-infrared light or ultrasound irradiations. The enzymatic activity of BCSO NSs also facilitates the transformation of tumor-specific substrates, dysregulating the redox homeostasis. The photothermoelectric and sono-piezoelectric/enzymatic activities of BCSO NSs have been exemplified by antibacterial and anticancer applications, highlighting the potential of two-dimensional superlattice nanocatalysts to address diverse pathological abnormalities.

摘要

虽然纳米化学的发展推动了催化纳米医学的出现,但具有多方面催化特性以用于治疗应用的纳米催化剂仍未得到充分探索。在此,我们展示了二维BiCuSeO纳米片(BCSO NSs)作为用于多模态能量转换驱动的纳米催化治疗的超晶格纳米催化剂。受益于其固有的层状异质结构和窄带隙,BCSO NSs具有光热电和超声压电催化效应,以及模拟酶的催化活性。理论计算表明,超晶格纳米结构内的内部电场有助于电荷载流子的快速分离和复合抑制。因此,BCSO NSs能够在第二近红外光或超声照射下实现可控的活性氧生成。BCSO NSs的酶活性还促进肿瘤特异性底物的转化,破坏氧化还原稳态。BCSO NSs的光热电和超声压电/酶活性已通过抗菌和抗癌应用得到例证,突出了二维超晶格纳米催化剂解决多种病理异常的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8542/12217262/266a72223027/41467_2025_61041_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8542/12217262/b90183df20c3/41467_2025_61041_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8542/12217262/8e84d51f8e11/41467_2025_61041_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8542/12217262/429b2f428a94/41467_2025_61041_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8542/12217262/1f2963830d66/41467_2025_61041_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8542/12217262/a45e6d4e4863/41467_2025_61041_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8542/12217262/2e9224f19d96/41467_2025_61041_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8542/12217262/1f9a591a028f/41467_2025_61041_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8542/12217262/7e70908d1794/41467_2025_61041_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8542/12217262/266a72223027/41467_2025_61041_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8542/12217262/b90183df20c3/41467_2025_61041_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8542/12217262/8e84d51f8e11/41467_2025_61041_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8542/12217262/429b2f428a94/41467_2025_61041_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8542/12217262/1f2963830d66/41467_2025_61041_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8542/12217262/a45e6d4e4863/41467_2025_61041_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8542/12217262/2e9224f19d96/41467_2025_61041_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8542/12217262/1f9a591a028f/41467_2025_61041_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8542/12217262/7e70908d1794/41467_2025_61041_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8542/12217262/266a72223027/41467_2025_61041_Fig9_HTML.jpg

相似文献

[1]
Two-dimensional superlattice nanocatalysts unlock multimodal energy transformation-driven catalytic therapy.

Nat Commun. 2025-7-1

[2]
Organic Synthesis Away from Equilibrium: Contrathermodynamic Transformations Enabled by Excited-State Electron Transfer.

Acc Chem Res. 2024-7-2

[3]
Multifunctional nanozymes based on MoS₂ for synergistic catalytic activity and cancer photothermal therapy.

Nanomedicine (Lond). 2025-7

[4]
Synergistic Defect-Driven Chemocatalysis and Ultrasound-Activated Piezocatalysis by Two-Dimensional SnSe Nanosheets.

Nano Lett. 2025-7-2

[5]
Management of urinary stones by experts in stone disease (ESD 2025).

Arch Ital Urol Androl. 2025-6-30

[6]
The Role of Anions in Guanidinium-Catalyzed Chiral Cation Ion Pair Catalysis.

Acc Chem Res. 2025-6-30

[7]
2D Indium-Vacancy-Rich ZnInS Nanocatalysts for Sonocatalytic Cancer Suppression by Boosting Cancer-Cell Pyroptosis.

Adv Mater. 2025-6

[8]
Selective Oxidation of Disparate Functional Groups Mediated by a Common Aspartic Acid-Based Peptide Catalyst Platform.

Acc Chem Res. 2025-6-18

[9]
Intelligent ROS therapy driven by iron-based nanozyme with controllable catalytic activity for infected wound healing.

J Nanobiotechnology. 2025-6-19

[10]
Primary Amine-Based Photoclick Chemistry: From Concept to Diverse Applications in Chemical Biology and Medicinal Chemistry.

Acc Chem Res. 2025-6-18

本文引用的文献

[1]
Thermoelectric Nanoheterojunction-Mediated Multiple Energy Conversion for Enhanced Cancer Therapy.

ACS Nano. 2024-12-17

[2]
An artificial metabzyme for tumour-cell-specific metabolic therapy.

Nat Nanotechnol. 2024-11

[3]
Targeting ROS in cancer: rationale and strategies.

Nat Rev Drug Discov. 2024-8

[4]
Tumour-microenvironment-responsive NaSO nanocrystals encapsulated in hollow organosilica-metal-phenolic networks for cycling persistent tumour-dynamic therapy.

Exploration (Beijing). 2023-11-14

[5]
A narrow-bandgap RuI nanoplatform to synergize radiotherapy, photothermal therapy, and thermoelectric dynamic therapy for tumor eradication.

Acta Biomater. 2024-7-1

[6]
Biomimetic piezoelectric nanomaterial-modified oral microrobots for targeted catalytic and immunotherapy of colorectal cancer.

Sci Adv. 2024-5-10

[7]
A Vacancy-Engineering Ferroelectric Nanomedicine for Cuproptosis/Apoptosis Co-Activated Immunotherapy.

Adv Mater. 2024-7

[8]
Single-Atom Catalysts Mediated Bioorthogonal Modulation of N-Methyladenosine Methylation for Boosting Cancer Immunotherapy.

J Am Chem Soc. 2024-3-27

[9]
Phase Engineered CuS-AgS with Photothermoelectric Activity for Enhanced Multienzyme Activity and Dynamic Therapy.

Adv Mater. 2024-6

[10]
Tuning oxidant and antioxidant activities of ceria by anchoring copper single-site for antibacterial application.

Nat Commun. 2024-2-3

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索