Suppr超能文献

利用视动反射学习曲线对小脑回路中长时程突触可塑性缺陷进行定位。

Localization of long-term synaptic plasticity defects in cerebellar circuits using optokinetic reflex learning profile.

机构信息

Department of Neurology, School of Medicine, AJA University of Medical Sciences, Tehran, Iran.

Department of Physiology, School of Medicine, AJA University of Medical Sciences, Tehran, Iran.

出版信息

J Neural Eng. 2022 Jun 20;19(3). doi: 10.1088/1741-2552/ac76df.

Abstract

Functional maps of the central nervous system attribute the coordination and control of many body movements directly or indirectly to the cerebellum. Despite this general picture, there is little information on the function of cerebellar neural components at the circuit level. The presence of multiple synaptic junctions and the synergistic action of different types of plasticity make it virtually difficult to determine the distinct contribution of cerebellar neural processes to behavioral manifestations. In this study, investigating the effect of long-term synaptic changes on cerebellar motor learning, we intend to provide quantitative criteria for localizing defects in the major forms of synaptic plasticity in the cerebellum.To this end, we develop a firing rate model of the cerebellar circuits to simulate learning of optokinetic reflex (OKR), one of the most well-known cerebellar-dependent motor tasks. In the following, by comparing the simulated OKR learning profile for normal and pathosynaptic conditions, we extract the learning features affected by long-term plasticity disorders. Next, conducting simulation with different massed (continuous with no rest) and spaced (interleaved with rest periods) learning paradigms, we estimate the detrimental impact of plasticity defects at corticonuclear synapses on short- and long-term motor memory.Our computational approach predicts a correlation between location and grade of the defect with some learning factors such as the rate of formation and retention of motor memory, baseline performance, and even cerebellar motor reserve capacity. Further, spacing analysis reveal the dependence of learning paradigm efficiency on the spatiotemporal characteristic of defect in the network. Indeed, defects in cortical memory formation and nuclear memory consolidation mainly harm massed and spaced learning, respectively. This result is used to design a differential assay for identifying the faulty phases of cerebellar learning.The proposed computational framework can help develop neural-screening systems and prepare meso-scale functional maps of the cerebellar circuits.

摘要

功能中枢神经系统图谱将许多身体运动的协调和控制直接或间接地归因于小脑。尽管有这样一个总体的画面,但关于小脑神经元件在电路水平上的功能的信息却很少。由于存在多个突触连接和不同类型的可塑性的协同作用,实际上很难确定小脑神经过程对行为表现的独特贡献。在这项研究中,我们研究了长期突触变化对小脑运动学习的影响,旨在为确定小脑主要形式的突触可塑性缺陷提供定量标准。为此,我们开发了小脑电路的发放率模型来模拟光运动反射(OKR)的学习,OKR 是最著名的小脑依赖运动任务之一。在下面,通过比较正常和病态突触条件下的模拟 OKR 学习曲线,我们提取出受长期可塑性障碍影响的学习特征。接下来,通过进行不同的密集(连续无休息)和间隔(交错休息期)学习范式的模拟,我们估计皮质核突触的可塑性缺陷对短期和长期运动记忆的有害影响。我们的计算方法预测了缺陷的位置和严重程度与一些学习因素之间的相关性,如运动记忆的形成和保留率、基线表现,甚至小脑运动储备能力。此外,间隔分析揭示了学习范式效率对网络中缺陷的时空特征的依赖性。实际上,皮质记忆形成和核记忆巩固的缺陷主要分别损害密集学习和间隔学习。该结果用于设计用于识别小脑学习错误阶段的差分测定法。所提出的计算框架可以帮助开发神经筛选系统并准备小脑电路的中尺度功能图谱。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验