Suppr超能文献

Role of excitatory amino acids in rat vagal and sympathetic baroreflexes.

作者信息

Guyenet P G, Filtz T M, Donaldson S R

出版信息

Brain Res. 1987 Mar 31;407(2):272-84. doi: 10.1016/0006-8993(87)91105-x.

Abstract

Vagal baroreflexes were studied by measuring the atropine-sensitive cardioinhibition produced by raising arterial pressure with phenylephrine in anesthetized rats pretreated with the beta-adrenergic receptor antagonist nadolol. Sympathetic baroreflexes were determined in halothane-anesthetized rats by measuring the inhibition of lumbar sympathetic discharge produced by elevating arterial pressure with gradual aortic constriction. Both reflexes were drastically reduced by bilateral injections of 2.2 nmol of the glutamate receptor antagonist kynurenic acid (KYN) into either the nucleus of the solitary tract (NTS) or the ventrolateral medulla between 0 and 1 mm posterior to the level of the obex. Injections of KYN elsewhere in the medulla were generally ineffective and injections of 8-OH kynurenate (an inactive analog) into the ventrolateral medulla or NTS were also without effect. KYN injections (2.2 nmol) into the intermediate portion of the NTS produced small increases in mean arterial pressure (0-15 mm Hg) and no change in heart rate while injections of similar amounts into the ventrolateral medulla at obex level were followed by large (35-116 mm Hg) increases in pressure and bradycardia. Both types of injections produced a similar degree of blockade of vagal and sympathetic baroreflexes. These results support previous evidence that baroreceptor primary afferents may release a glutamate-like transmitter in the NTS and indicate that a similar type of excitatory transmitter is involved at the level of the ventrolateral medulla in mediating or modulating both vagal and sympathetic baroreflexes. Finally the bradycardia and hypertension produced by blocking amino acid receptors in the ventrolateral medulla appear largely unrelated to the disruption of peripheral baroreceptor inputs.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验