Suppr超能文献

Gail模型在乳腺影像报告和数据系统(BIRADS)4a类病例乳腺癌诊断中的应用效果。

The effect of the use of the Gail model on breast cancer diagnosis in BIRADs 4a cases.

作者信息

Karakaya Emre, Erkent Murathan, Turnaoğlu Hale, Şirinoğlu Tuğçe, Akdur Aydıncan, Kavasoğlu Lara

机构信息

Department of General Surgery, Baskent University Faculty of Medicine, Ankara, Turkey.

Department of Radiology, Baskent University Faculty of Medicine, Ankara, Turkey.

出版信息

Turk J Surg. 2021 Dec 31;37(4):394-399. doi: 10.47717/turkjsurg.2021.5436. eCollection 2021 Dec.

Abstract

OBJECTIVES

The BI-RADS classification system and the Gail Model are the scoring systems that contribute to the diagnosis of breast cancer. The aim of the study was to determine the contribution of Gail Model to the diagnosis of breast lesions that were radiologically categorized as BI-RADS 4A.

MATERIAL AND METHODS

We retrospectively examined the medical records of 320 patients between January 2011 and December 2020 whose lesions had been categorized as BI-RADS 4A. Radiological parameters of breast lesions and clinical parameters according to the Gail Model were collected. The relationship between malignant BI-RADS 4A lesions and radiological and clinical parameters was evaluated. In addition, the effect of the Gail Model on diagnosis in malignant BI-RADS 4A lesions was evaluated.

RESULTS

Among radiological features, there were significant differences between lesion size, contour, microcalcification content, echogenicity, and presence of ectasia with respect to the pathological diagnosis (p <0.05). No significant difference was found between the lesions' pathological diagnosis and the patients' Gail score (p> 0.05). An analysis of the features of the Gail model revealed that there was no significant difference between the age of menarche, age at first live birth, presence of a first-degree relative with breast cancer, and a history of breast biopsy and the pathological diagnosis (p> 0.05).

CONCLUSION

As a conclusion Gail Model does not contribute to the diagnosis of BC, especially in patients with BI-RADS 4A lesions.

摘要

目的

乳腺影像报告和数据系统(BI-RADS)分类系统和盖尔模型是有助于乳腺癌诊断的评分系统。本研究的目的是确定盖尔模型对经放射学分类为BI-RADS 4A的乳腺病变诊断的贡献。

材料与方法

我们回顾性研究了2011年1月至2020年12月期间320例病变被分类为BI-RADS 4A的患者的病历。收集了乳腺病变的放射学参数和根据盖尔模型的临床参数。评估了恶性BI-RADS 4A病变与放射学和临床参数之间的关系。此外,评估了盖尔模型对恶性BI-RADS 4A病变诊断的影响。

结果

在放射学特征方面,病变大小、轮廓、微钙化含量、回声性和扩张的存在在病理诊断方面存在显著差异(p<0.05)。病变的病理诊断与患者的盖尔评分之间未发现显著差异(p>0.05)。对盖尔模型特征的分析表明,初潮年龄、首次活产年龄、有乳腺癌一级亲属、乳腺活检史与病理诊断之间无显著差异(p>0.05)。

结论

总之,盖尔模型对乳腺癌的诊断没有贡献,尤其是对BI-RADS 4A病变的患者。

相似文献

本文引用的文献

6
Cancer Statistics, 2021.癌症统计数据,2021.
CA Cancer J Clin. 2021 Jan;71(1):7-33. doi: 10.3322/caac.21654. Epub 2021 Jan 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验