Suppr超能文献

通过整合主成分分析和聚类技术,利用长短期记忆网络预测新型冠状病毒肺炎

Prediction of COVID-19 using long short-term memory by integrating principal component analysis and clustering techniques.

作者信息

Ilu Saratu Yusuf, Rajesh Prasad, Mohammed Hassan

机构信息

African University of Science and Technology, Abuja, Nigeria.

Bayero University, Kano, Nigeria.

出版信息

Inform Med Unlocked. 2022;31:100990. doi: 10.1016/j.imu.2022.100990. Epub 2022 Jun 3.

Abstract

Severe acute respiratory syndrome coronavirus (SARS-COV) is a major family of viruses that cause infections in both animals and humans, including common cold, coronavirus disease (COVID-19), severe acute respiratory syndrome (SARS), and Middle East respiratory syndrome. This study primarily aims to predict the number of COVID-19 positive cases in 36 states of Nigeria using a long short-term memory (LSTM) algorithm of deep learning. The proposed approach employs K-means clustering to detect outliers and principal component analysis (PCA) to select important features from the dataset. The LSTM was chosen because of its non-linear characteristics to handle the dataset. As COVID-19 cases follow non-linear characteristics, LSTM is the most suitable algorithm for predicting their numbers. For comparison, several types of machine learning algorithms, such as naive Bayes, XG-boost, and SVM, were employed. After the comparison, LSTM was observed to be superior among all algorithms.

摘要

严重急性呼吸综合征冠状病毒(SARS-CoV)是一类主要的病毒,可在动物和人类中引发感染,包括普通感冒、冠状病毒病(COVID-19)、严重急性呼吸综合征(SARS)和中东呼吸综合征。本研究主要旨在使用深度学习的长短期记忆(LSTM)算法预测尼日利亚36个州的COVID-19阳性病例数。所提出的方法采用K均值聚类来检测异常值,并使用主成分分析(PCA)从数据集中选择重要特征。选择LSTM是因为其具有处理数据集的非线性特征。由于COVID-19病例具有非线性特征,LSTM是预测其病例数最合适的算法。为了进行比较,还采用了几种类型的机器学习算法,如朴素贝叶斯、XG-boost和支持向量机(SVM)。比较之后,发现LSTM在所有算法中表现最优。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验