Burlacot Adrien, Dao Ousmane, Auroy Pascaline, Cuiné Stephan, Li-Beisson Yonghua, Peltier Gilles
Aix Marseille Univ, CEA, CNRS, Institut de Biosciences et Biotechnologies Aix-Marseille, CEA Cadarache, Saint-Paul-lez-Durance, France.
Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, USA.
Nature. 2022 May;605(7909):366-371. doi: 10.1038/s41586-022-04662-9. Epub 2022 Apr 27.
Global photosynthesis consumes ten times more CO than net anthropogenic emissions, and microalgae account for nearly half of this consumption. The high efficiency of algal photosynthesis relies on a mechanism concentrating CO (CCM) at the catalytic site of the carboxylating enzyme RuBisCO, which enhances CO fixation. Although many cellular components involved in the transport and sequestration of inorganic carbon have been identified, how microalgae supply energy to concentrate CO against a thermodynamic gradient remains unknown. Here we show that in the green alga Chlamydomonas reinhardtii, the combined action of cyclic electron flow and O photoreduction-which depend on PGRL1 and flavodiiron proteins, respectively-generate a low luminal pH that is essential for CCM function. We suggest that luminal protons are used downstream of thylakoid bestrophin-like transporters, probably for the conversion of bicarbonate to CO. We further establish that an electron flow from chloroplast to mitochondria contributes to energizing non-thylakoid inorganic carbon transporters, probably by supplying ATP. We propose an integrated view of the network supplying energy to the CCM, and describe how algal cells distribute energy from photosynthesis to power different CCM processes. These results suggest a route for the transfer of a functional algal CCM to plants to improve crop productivity.
全球光合作用消耗的二氧化碳比人为净排放多十倍,而微藻占这种消耗的近一半。藻类光合作用的高效率依赖于一种在羧化酶核酮糖-1,5-二磷酸羧化酶(RuBisCO)催化位点浓缩二氧化碳的机制(CCM),该机制增强了二氧化碳的固定。尽管已经确定了许多参与无机碳运输和封存的细胞成分,但微藻如何提供能量以逆热力学梯度浓缩二氧化碳仍然未知。在这里,我们表明,在绿藻莱茵衣藻中,循环电子流和光还原作用(分别依赖于PGRL1和黄素二铁蛋白)的联合作用产生了低腔pH值,这对CCM功能至关重要。我们认为腔内质子在类囊体Bestrophin样转运蛋白下游被利用,可能用于将碳酸氢盐转化为二氧化碳。我们进一步确定,从叶绿体到线粒体的电子流有助于为非类囊体无机碳转运蛋白提供能量,可能是通过提供ATP。我们提出了一个为CCM提供能量的网络的综合观点,并描述了藻类细胞如何分配光合作用的能量来驱动不同的CCM过程。这些结果为将功能性藻类CCM转移到植物中以提高作物生产力提供了一条途径。