Suppr超能文献

直接观察细菌伴侣蛋白在蛋白质折叠中的机械作用。

Direct Observation of the Mechanical Role of Bacterial Chaperones in Protein Folding.

机构信息

Department of Biological Sciences, Ashoka University, Sonepat, Haryana 131029, India.

出版信息

Biomacromolecules. 2022 Jul 11;23(7):2951-2967. doi: 10.1021/acs.biomac.2c00451. Epub 2022 Jun 9.

Abstract

Protein folding under force is an integral source of generating mechanical energy in various cellular processes, ranging from protein translation to degradation. Although chaperones are well known to interact with proteins under mechanical force, how they respond to force and control cellular energetics remains unknown. To address this question, we introduce a real-time magnetic tweezer technology herein to mimic the physiological force environment on client proteins, keeping the chaperones unperturbed. We studied two structurally distinct client proteins--protein L and talin with seven different chaperones─independently and in combination and proposed a novel mechanical activity of chaperones. We found that chaperones behave differently, while these client proteins are under force, than their previously known functions. For instance, tunnel-associated chaperones (DsbA and trigger factor), otherwise working as holdase without force, assist folding under force. This process generates an additional mechanical energy up to ∼147 zJ to facilitate translation or translocation. However, well-known cytoplasmic foldase chaperones (PDI, thioredoxin, or DnaKJE) do not possess the mechanical folding ability under force. Notably, the transferring chaperones (DnaK, DnaJ, and SecB) act as holdase and slow down the folding process, both in the presence and absence of force, to prevent misfolding of the client proteins. This provides an emerging insight of mechanical roles of chaperones: they can generate or consume energy by shifting the energy landscape of the client proteins toward a folded or an unfolded state, suggesting an evolutionary mechanism to minimize energy consumption in various biological processes.

摘要

力下的蛋白质折叠是各种细胞过程中产生机械能的一个组成部分,从蛋白质翻译到降解。虽然伴侣蛋白在机械力下与蛋白质相互作用是众所周知的,但它们如何响应力并控制细胞能量仍不清楚。为了解决这个问题,我们在这里引入了一种实时磁镊技术,模拟客户蛋白上的生理力环境,同时保持伴侣蛋白不受干扰。我们独立地和组合地研究了两种结构上不同的客户蛋白——蛋白 L 和 talin,以及七种不同的伴侣蛋白,并提出了伴侣蛋白的一种新的机械活性。我们发现,当这些客户蛋白受到力的作用时,伴侣蛋白的行为与它们以前已知的功能不同。例如,隧道相关伴侣蛋白(DsbA 和触发因子),在没有力的情况下作为热休克蛋白发挥作用,在力的作用下协助折叠。这个过程产生了额外的机械能,高达约 147 zJ,以促进翻译或易位。然而,众所周知的细胞质折叠酶伴侣蛋白(PDI、硫氧还蛋白或 DnaKJE)在力的作用下不具备机械折叠能力。值得注意的是,转移伴侣蛋白(DnaK、DnaJ 和 SecB)作为热休克蛋白发挥作用,并在有或没有力的情况下减缓折叠过程,以防止客户蛋白的错误折叠。这提供了一个关于伴侣蛋白机械作用的新视角:它们可以通过将客户蛋白的能量景观向折叠或未折叠状态转移来产生或消耗能量,这表明了一种在各种生物过程中最小化能量消耗的进化机制。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验