Department of Psychology, Goethe University Frankfurt, Frankfurt am Main, Germany.
Center for Individual Development and Adaptive Education of Children at Risk (IDeA), Frankfurt am Main, Germany.
PLoS Comput Biol. 2022 Jun 9;18(6):e1009995. doi: 10.1371/journal.pcbi.1009995. eCollection 2022 Jun.
To characterize the functional role of the left-ventral occipito-temporal cortex (lvOT) during reading in a quantitatively explicit and testable manner, we propose the lexical categorization model (LCM). The LCM assumes that lvOT optimizes linguistic processing by allowing fast meaning access when words are familiar and filtering out orthographic strings without meaning. The LCM successfully simulates benchmark results from functional brain imaging described in the literature. In a second evaluation, we empirically demonstrate that quantitative LCM simulations predict lvOT activation better than alternative models across three functional magnetic resonance imaging studies. We found that word-likeness, assumed as input into a lexical categorization process, is represented posteriorly to lvOT, whereas a dichotomous word/non-word output of the LCM could be localized to the downstream frontal brain regions. Finally, training the process of lexical categorization resulted in more efficient reading. In sum, we propose that word recognition in the ventral visual stream involves word-likeness extraction followed by lexical categorization before one can access word meaning.
为了以定量的、可检验的方式来描述阅读过程中左腹侧枕颞叶皮层(lvOT)的功能作用,我们提出了词汇分类模型(LCM)。LCM 假设 lvOT 通过在熟悉单词时允许快速访问词义,并过滤掉没有意义的字形串,从而优化语言处理。LCM 成功模拟了文献中描述的功能磁共振成像的基准结果。在第二个评估中,我们通过三项功能磁共振成像研究实证证明,定量 LCM 模拟比替代模型更能预测 lvOT 的激活。我们发现,词汇分类过程中的假设输入——词似性,位于 lvOT 后部,而 LCM 的二分类词/非词输出可以定位于下游的额前脑区。最后,对词汇分类过程进行训练会导致阅读效率的提高。总之,我们提出在腹侧视觉流中进行单词识别涉及词似性提取,然后进行词汇分类,之后才能获得单词的意义。