Suppr超能文献

基于心外膜放置加速度计的心脏信号的深度神经网络自动检测主动脉瓣事件。

Automatic Detection of Aortic Valve Events Using Deep Neural Networks on Cardiac Signals From Epicardially Placed Accelerometer.

出版信息

IEEE J Biomed Health Inform. 2022 Sep;26(9):4450-4461. doi: 10.1109/JBHI.2022.3181148. Epub 2022 Sep 9.

Abstract

BACKGROUND

Miniaturized accelerometers incorporated in pacing leads attached to the myocardium, are used to monitor cardiac function. For this purpose functional indices must be extracted from the acceleration signal. A method that automatically detects the time of aortic valve opening (AVO) and aortic valve closure (AVC) will be helpful for such extraction. We tested if deep learning can be used to detect these valve events from epicardially attached accelerometers, using high fidelity pressure measurements to establish ground truth for these valve events.

METHOD

A deep neural network consisting of a CNN, an RNN, and a multi-head attention module was trained and tested on 130 recordings from 19 canines and 159 recordings from 27 porcines covering different interventions. Due to limited data, nested cross-validation was used to assess the accuracy of the method.

RESULT

The correct detection rates were 98.9% and 97.1% for AVO and AVC in canines and 98.2% and 96.7% in porcines when defining a correct detection as a prediction closer than 40 ms to the ground truth. The incorrect detection rates were 0.7% and 2.3% for AVO and AVC in canines and 1.1% and 2.3% in porcines. The mean absolute error between correct detections and their ground truth was 8.4 ms and 7.2 ms for AVO and AVC in canines, and 8.9 ms and 10.1 ms in porcines.

CONCLUSION

Deep neural networks can be used on signals from epicardially attached accelerometers for robust and accurate detection of the opening and closing of the aortic valve.

摘要

背景

附着在心肌上的起搏导线上的微型加速度计用于监测心脏功能。为此,必须从加速度信号中提取功能指标。一种自动检测主动脉瓣开放 (AVO) 和主动脉瓣关闭 (AVC) 时间的方法将有助于此类提取。我们测试了深度学习是否可以用于从心外膜附着的加速度计检测这些瓣膜事件,并使用高保真压力测量来为这些瓣膜事件建立真实基准。

方法

一个由 CNN、RNN 和多头注意力模块组成的深度神经网络在 19 只犬和 27 只猪的 130 次和 159 次记录上进行了训练和测试,涵盖了不同的干预措施。由于数据有限,使用嵌套交叉验证来评估该方法的准确性。

结果

在犬类中,将正确检测定义为预测值与真实值相差 40 毫秒以内时,AVO 和 AVC 的正确检测率分别为 98.9%和 97.1%,而在猪类中则分别为 98.2%和 96.7%。AVO 和 AVC 的错误检测率分别为犬类的 0.7%和 2.3%,以及猪类的 1.1%和 2.3%。在犬类中,正确检测与真实值之间的平均绝对误差分别为 AVO 和 AVC 的 8.4 毫秒和 7.2 毫秒,而在猪类中则分别为 8.9 毫秒和 10.1 毫秒。

结论

深度神经网络可用于心外膜附着的加速度计信号,用于稳健准确地检测主动脉瓣的开启和关闭。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验