Suppr超能文献

基于集成生物信息学分析和机器学习的代谢综合征诊断主动脉瓣钙化相关免疫基因的鉴定。

Identification of Immune-Associated Genes in Diagnosing Aortic Valve Calcification With Metabolic Syndrome by Integrated Bioinformatics Analysis and Machine Learning.

机构信息

Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China.

Department of Pediatric Cardiology, Xinhua Hospital, The Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.

出版信息

Front Immunol. 2022 Jul 4;13:937886. doi: 10.3389/fimmu.2022.937886. eCollection 2022.

Abstract

BACKGROUND

Immune system dysregulation plays a critical role in aortic valve calcification (AVC) and metabolic syndrome (MS) pathogenesis. The study aimed to identify pivotal diagnostic candidate genes for AVC patients with MS.

METHODS

We obtained three AVC and one MS dataset from the gene expression omnibus (GEO) database. Identification of differentially expressed genes (DEGs) and module gene Limma and weighted gene co-expression network analysis (WGCNA), functional enrichment analysis, protein-protein interaction (PPI) network construction, and machine learning algorithms (least absolute shrinkage and selection operator (LASSO) regression and random forest) were used to identify candidate immune-associated hub genes for diagnosing AVC with MS. To assess the diagnostic value, the nomogram and receiver operating characteristic (ROC) curve were developed. Finally, immune cell infiltration was created to investigate immune cell dysregulation in AVC.

RESULTS

The merged AVC dataset included 587 DEGs, and 1,438 module genes were screened out in MS. MS DEGs were primarily enriched in immune regulation. The intersection of DEGs for AVC and module genes for MS was 50, which were mainly enriched in the immune system as well. Following the development of the PPI network, 26 node genes were filtered, and five candidate hub genes were chosen for nomogram building and diagnostic value evaluation after machine learning. The nomogram and all five candidate hub genes had high diagnostic values (area under the curve from 0.732 to 0.982). Various dysregulated immune cells were observed as well.

CONCLUSION

Five immune-associated candidate hub genes (, , , , and ) were identified, and the nomogram was constructed for AVC with MS diagnosis. Our study could provide potential peripheral blood diagnostic candidate genes for AVC in MS patients.

摘要

背景

免疫系统失调在主动脉瓣钙化(AVC)和代谢综合征(MS)发病机制中起着关键作用。本研究旨在确定合并 MS 的 AVC 患者的关键诊断候选基因。

方法

我们从基因表达综合数据库(GEO)中获得了三个 AVC 和一个 MS 数据集。使用 Limma 和加权基因共表达网络分析(WGCNA)识别差异表达基因(DEGs)和模块基因,进行功能富集分析、蛋白质-蛋白质相互作用(PPI)网络构建和机器学习算法(最小绝对收缩和选择算子(LASSO)回归和随机森林),以识别诊断合并 MS 的 AVC 的候选免疫相关枢纽基因。为了评估诊断价值,开发了列线图和接受者操作特征(ROC)曲线。最后,创建免疫细胞浸润以研究 AVC 中的免疫细胞失调。

结果

合并的 AVC 数据集包含 587 个 DEGs,MS 中筛选出 1438 个模块基因。MS 的 DEGs 主要富集在免疫调节中。AVC 的 DEGs 与 MS 的模块基因的交集为 50,主要也富集在免疫系统中。在开发 PPI 网络之后,筛选出 26 个节点基因,通过机器学习选择了五个候选枢纽基因进行列线图构建和诊断价值评估。列线图和所有五个候选枢纽基因都具有较高的诊断价值(曲线下面积从 0.732 到 0.982)。还观察到各种失调的免疫细胞。

结论

确定了五个免疫相关的候选枢纽基因(、、、、和),并构建了用于诊断合并 MS 的 AVC 的列线图。我们的研究为 MS 患者的 AVC 提供了潜在的外周血诊断候选基因。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/550a/9295723/2c4ab1e74e60/fimmu-13-937886-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验