Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA.
Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA.
Science. 2022 Jun 10;376(6598):eabm9129. doi: 10.1126/science.abm9129.
INTRODUCTION The subcellular compartmentalization of eukaryotic cells requires selective transport of folded proteins and protein-nucleic acid complexes. Embedded in nuclear envelope pores, which are generated by the circumscribed fusion of the inner and outer nuclear membranes, nuclear pore complexes (NPCs) are the sole bidirectional gateways for nucleocytoplasmic transport. The ~110-MDa human NPC is an ~1000-protein assembly that comprises multiple copies of ~34 different proteins, collectively termed nucleoporins. The symmetric core of the NPC is composed of an inner ring encircling the central transport channel and outer rings formed by Y‑shaped coat nucleoporin complexes (CNCs) anchored atop both sides of the nuclear envelope. The outer rings are decorated with compartment‑specific asymmetric nuclear basket and cytoplasmic filament nucleoporins, which establish transport directionality and provide docking sites for transport factors and the small guanosine triphosphatase Ran. The cytoplasmic filament nucleoporins also play an essential role in the irreversible remodeling of messenger ribonucleoprotein particles (mRNPs) as they exit the central transport channel. Unsurprisingly, the NPC's cytoplasmic face represents a hotspot for disease‑associated mutations and is commonly targeted by viral virulence factors. RATIONALE Previous studies established a near-atomic composite structure of the human NPC's symmetric core by combining (i) biochemical reconstitution to elucidate the interaction network between symmetric nucleoporins, (ii) crystal and single-particle cryo-electron microscopy structure determination of nucleoporins and nucleoporin complexes to reveal their three-dimensional shape and the molecular details of their interactions, (iii) quantitative docking in cryo-electron tomography (cryo-ET) maps of the intact human NPC to uncover nucleoporin stoichiometry and positioning, and (iv) cell‑based assays to validate the physiological relevance of the biochemical and structural findings. In this work, we extended our approach to the cytoplasmic filament nucleoporins to reveal the near-atomic architecture of the cytoplasmic face of the human NPC. RESULTS Using biochemical reconstitution, we elucidated the protein-protein and protein-RNA interaction networks of the human and cytoplasmic filament nucleoporins, establishing an evolutionarily conserved heterohexameric cytoplasmic filament nucleoporin complex (CFNC) held together by a central heterotrimeric coiled‑coil hub that tethers two separate mRNP‑remodeling complexes. Further biochemical analysis and determination of a series of crystal structures revealed that the metazoan‑specific cytoplasmic filament nucleoporin NUP358 is composed of 16 distinct domains, including an N‑terminal S‑shaped α‑helical solenoid followed by a coiled‑coil oligomerization element, numerous Ran‑interacting domains, an E3 ligase domain, and a C‑terminal prolyl‑isomerase domain. Physiologically validated quantitative docking into cryo-ET maps of the intact human NPC revealed that pentameric NUP358 bundles, conjoined by the oligomerization element, are anchored through their N‑terminal domains to the central stalk regions of the CNC, projecting flexibly attached domains as far as ~600 Å into the cytoplasm. Using cell‑based assays, we demonstrated that NUP358 is dispensable for the architectural integrity of the assembled interphase NPC and RNA export but is required for efficient translation. After NUP358 assignment, the remaining 4-shaped cryo‑ET density matched the dimensions of the CFNC coiled‑coil hub, in close proximity to an outer-ring NUP93. Whereas the N-terminal NUP93 assembly sensor motif anchors the properly assembled related coiled‑coil channel nucleoporin heterotrimer to the inner ring, biochemical reconstitution confirmed that the NUP93 assembly sensor is reused in anchoring the CFNC to the cytoplasmic face of the human NPC. By contrast, two CFNCs are anchored by a divergent mechanism that involves assembly sensors located in unstructured portions of two CNC nucleoporins. Whereas unassigned cryo‑ET density occupies the NUP358 and CFNC binding sites on the nuclear face, docking of the nuclear basket component ELYS established that the equivalent position on the cytoplasmic face is unoccupied, suggesting that mechanisms other than steric competition promote asymmetric distribution of nucleoporins. CONCLUSION We have substantially advanced the biochemical and structural characterization of the asymmetric nucleoporins' architecture and attachment at the cytoplasmic and nuclear faces of the NPC. Our near‑atomic composite structure of the human NPC's cytoplasmic face provides a biochemical and structural framework for elucidating the molecular basis of mRNP remodeling, viral virulence factor interference with NPC function, and the underlying mechanisms of nucleoporin diseases at the cytoplasmic face of the NPC. [Figure: see text].
简介 真核细胞的亚细胞区室化需要选择性地运输折叠蛋白和蛋白-核酸复合物。核孔复合物(NPC)嵌入核孔中,核孔是由内、外核膜的限定融合产生的,是核质转运的唯一双向门户。110-MDa 的人 NPC 是一个由1000 种不同蛋白组成的34 种不同蛋白的复合物,统称为核孔蛋白。NPC 的对称核心由一个环绕中央转运通道的内环和由锚定在内、外核膜两侧的 Y 形核被膜衣壳核孔蛋白复合物(CNC)形成的外环组成。外环上装饰有具有特定隔间的不对称核篮和细胞质丝状核孔蛋白,它们建立了转运方向,并为转运因子和小分子 GTP 酶 Ran 提供了停靠位点。细胞质丝状核孔蛋白在信使核糖核蛋白颗粒(mRNP)不可逆重塑过程中也起着至关重要的作用,因为它们从中央转运通道中出来。毫不奇怪,NPC 的细胞质面是与疾病相关的突变的热点,通常是病毒毒力因子的靶向目标。 原理 先前的研究通过结合以下方法建立了人 NPC 对称核心的近原子复合结构:(i)通过阐明对称核孔蛋白之间的相互作用网络来进行生化重建;(ii)通过结晶和单颗粒冷冻电镜结构测定核孔蛋白和核孔蛋白复合物来揭示它们的三维形状和相互作用的分子细节;(iii)通过在完整的人 NPC 的冷冻电子断层扫描(cryo-ET)图谱中进行定量对接来揭示核孔蛋白的化学计量和定位;(iv)通过细胞测定来验证生化和结构发现的生理相关性。在这项工作中,我们将我们的方法扩展到细胞质丝状核孔蛋白,以揭示人 NPC 细胞质面的近原子结构。 结果 使用生化重建,我们阐明了人和细胞质丝状核孔蛋白的蛋白-蛋白和蛋白-RNA 相互作用网络,建立了一个进化上保守的异六聚体细胞质丝状核孔蛋白复合物(CFNC),由一个中央异三聚体卷曲螺旋枢纽连接在一起,该枢纽固定两个独立的 mRNP 重塑复合物。进一步的生化分析和一系列晶体结构的测定揭示了后生动物特异性的细胞质丝状核孔蛋白 NUP358 由 16 个不同的结构域组成,包括一个 N 端 S 形α-螺旋螺旋线,其后是一个卷曲螺旋寡聚化元件,许多 Ran 相互作用结构域,一个 E3 连接酶结构域和一个 C 端脯氨酰异构酶结构域。经过生理验证的定量对接进入完整的人 NPC 的 cryo-ET 图谱表明,五聚体 NUP358 束通过寡聚化元件连接在一起,通过它们的 N 端结构域锚定在 CNC 的中央茎区,将灵活连接的结构域伸展到细胞质中长达600 Å。使用细胞测定,我们证明 NUP358 对于组装的间期中 NPC 的结构完整性和 RNA 输出不是必需的,但对于有效的翻译是必需的。在 NUP358 分配后,剩余的 4 形 cryo-ET 密度与 CFNC 卷曲螺旋枢纽的尺寸相匹配,靠近外环 NUP93。虽然 N 端 NUP93 组装传感器基序将正确组装的相关卷曲螺旋通道核孔蛋白异三聚体锚定在内环,但生化重建证实 NUP93 组装传感器被重新用于将 CFNC 锚定到人 NPC 的细胞质面。相比之下,两个 CFNC 是通过两种不同的机制锚定的,涉及位于两个 CNC 核孔蛋白无结构部分的组装传感器。虽然未分配的 cryo-ET 密度占据核面的 NUP358 和 CFNC 结合位点,但核篮组件 ELYS 的对接确定了细胞质面的等效位置未被占据,这表明不对称核孔蛋白分布的促进机制不仅仅是空间竞争。 结论 我们在 NPC 的细胞质和核面的不对称核孔蛋白的结构和附着方面大大推进了生化和结构特征的研究。我们对人 NPC 细胞质面的近原子复合结构为阐明 mRNP 重塑的分子基础、病毒毒力因子对 NPC 功能的干扰以及 NPC 细胞质面核孔蛋白疾病的潜在机制提供了生化和结构框架。[图:见正文]。