Gogia Alisha, Mandal Sanjay K
Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, Manauli P.O., S.A.S. Nagar, Mohali 140306, Punjab, India.
ACS Appl Mater Interfaces. 2022 Jun 22;14(24):27941-27954. doi: 10.1021/acsami.2c06141. Epub 2022 Jun 9.
The use of metal-organic frameworks (MOFs) comprising custom-designed linkers/ligands as efficient and recyclable heterogeneous catalysts is on the rise. However, the topologically driven bifunctional porous MOFs for showcasing a synergistic effect of two distinct activation pathways of substrates (e.g., involving hydrogen bonding and a Lewis acid) in multicomponent organic transformations are very challenging. In particular, the novelty of such studies lies in the proper pore and/or surface engineering in MOFs for bringing the substrates in close proximity to understand the mechanistic aspects at the molecular level. This work represents the topological design, solid-state structural characterization, and catalytic behavior of an oxadiazole tetracarboxylate-based microporous three-dimensional (3D) metal-organic framework (MOF), {[Zn(oxdia)(4,4'-bpy)]·8.5HO} (), where the tetrapodal (4-connected) 5,5'-(1,3,4-oxadiazole-2,5-diyl)diisophthalate (oxdia), the tetrahedral metal vertex (Zn(II)), and a 2-connected pillar linker 4,4'-bipyridine (4,4'-bpy) are unique in their roles for the formation, stability, and function. As a proof of concept, the efficient utilization of both the oxadiazole moiety with an ability to provide H-bond acceptors and the coordinatively unsaturated Zn(II) centers in is demonstrated for the catalytic process of the one-pot multicomponent Biginelli reaction under mild conditions and without a solvent. The key steps of substrate binding with the oxadiazole moiety are ascertained by a fluorescence experiment, demonstrating a decrease or increase in the emission intensity upon interaction with the substrates. Furthermore, the inherent polarizability of the oxadiazole moiety is exploited for CO capture and its size-selective chemical fixation to cyclic carbonates at room temperature and under solvent-free conditions. For both catalytic processes, the chemical stability, structural integrity, heterogeneity, versatility in terms of substrate scope, and mechanistic insights are discussed. Interestingly, the first catalytic process occurs on the surface, while the second reaction occurs inside the pore. This study opens new ways to catalyze different organic transformation reactions by utilizing this docking strategy to bring the multiple components close together by a microporous MOF.
使用包含定制设计的连接体/配体的金属有机框架(MOF)作为高效且可回收的多相催化剂的情况正在增加。然而,用于在多组分有机转化中展示底物的两种不同活化途径(例如,涉及氢键和路易斯酸)的协同效应的拓扑驱动双功能多孔MOF极具挑战性。特别地,此类研究的新颖之处在于MOF中适当的孔和/或表面工程,以使底物紧密接近,从而在分子水平上理解其机理。这项工作展示了一种基于恶二唑四羧酸酯的微孔三维(3D)金属有机框架(MOF){[Zn(oxdia)(4,4'-bpy)]·8.5H₂O}()的拓扑设计、固态结构表征和催化行为,其中四足(4连接)的5,5'-(1,3,4-恶二唑-2,5-二基)二间苯二甲酸酯(oxdia)、四面体金属顶点(Zn(II))和2连接的支柱连接体4,4'-联吡啶(4,4'-bpy)在其形成、稳定性和功能方面具有独特作用。作为概念验证,在温和条件且无溶剂的情况下,对于一锅多组分Biginelli反应的催化过程,证明了恶二唑部分提供氢键受体的能力和中配位不饱和的Zn(II)中心的有效利用。通过荧光实验确定了底物与恶二唑部分结合的关键步骤,表明与底物相互作用时发射强度降低或增加。此外,利用恶二唑部分固有的极化率在室温且无溶剂条件下捕获CO并将其尺寸选择性化学固定为环状碳酸酯。对于这两个催化过程,讨论了化学稳定性、结构完整性、多相性、底物范围的通用性以及机理见解。有趣的是,第一个催化过程发生在表面,而第二个反应发生在孔内。这项研究通过利用这种对接策略,通过微孔MOF使多种组分紧密靠近,为催化不同的有机转化反应开辟了新途径。