Suppr超能文献

simplifyEnrichment:一个用于聚类和可视化功能富集结果的 Bioconductor 包。

simplifyEnrichment: A Bioconductor Package for Clustering and Visualizing Functional Enrichment Results.

机构信息

Molecular Precision Oncology Program, National Center for Tumor Diseases (NCT) Heidelberg, D-69120 Heidelberg, Germany.

Molecular Precision Oncology Program, National Center for Tumor Diseases (NCT) Heidelberg, D-69120 Heidelberg, Germany; Heidelberg Institute of Stem Cell Technology and Experimental Medicine (HI-STEM), D-69120 Heidelberg, Germany; German Cancer Consortium (DKTK), D-69120 Heidelberg, Germany; Department of Pediatric Immunology, Hematology and Oncology, University Hospital Heidelberg, D-69120 Heidelberg, Germany.

出版信息

Genomics Proteomics Bioinformatics. 2023 Feb;21(1):190-202. doi: 10.1016/j.gpb.2022.04.008. Epub 2022 Jun 6.

Abstract

Functional enrichment analysis or gene set enrichment analysis is a basic bioinformatics method that evaluates the biological importance of a list of genes of interest. However, it may produce a long list of significant terms with highly redundant information that is difficult to summarize. Current tools to simplify enrichment results by clustering them into groups either still produce redundancy between clusters or do not retain consistent term similarities within clusters. We propose a new method named binary cut for clustering similarity matrices of functional terms. Through comprehensive benchmarks on both simulated and real-world datasets, we demonstrated that binary cut could efficiently cluster functional terms into groups where terms showed consistent similarities within groups and were mutually exclusive between groups. We compared binary cut clustering on the similarity matrices obtained from different similarity measures and found that semantic similarity worked well with binary cut, while similarity matrices based on gene overlap showed less consistent patterns. We implemented the binary cut algorithm in the R package simplifyEnrichment, which additionally provides functionalities for visualizing, summarizing, and comparing the clustering. The simplifyEnrichment package and the documentation are available at https://bioconductor.org/packages/simplifyEnrichment/.

摘要

功能富集分析或基因集富集分析是一种基本的生物信息学方法,用于评估一组感兴趣基因的生物学重要性。然而,它可能会产生大量具有高度冗余信息的显著术语,难以进行总结。目前,通过聚类将富集结果简化的工具要么仍然在聚类之间产生冗余,要么不在聚类内部保留一致的术语相似性。我们提出了一种名为二进制切割的新方法,用于聚类功能术语的相似性矩阵。通过对模拟和真实数据集的全面基准测试,我们证明了二进制切割可以有效地将功能术语聚类成组,其中术语在组内显示出一致的相似性,并且在组之间是相互排斥的。我们比较了基于不同相似性度量的相似性矩阵上的二进制切割聚类,发现语义相似性与二进制切割配合良好,而基于基因重叠的相似性矩阵显示出较少的一致模式。我们在 R 包 simplifyEnrichment 中实现了二进制切割算法,该包还提供了可视化、总结和比较聚类的功能。simplifyEnrichment 包和文档可在 https://bioconductor.org/packages/simplifyEnrichment/ 获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de43/10373083/b2f0609552a1/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验