Suppr超能文献

通过改进差分进化实现的高度加速双姿态医学图像配准

Highly Accelerated Dual-Pose Medical Image Registration via Improved Differential Evolution.

作者信息

Zhou Dibin, Xing Fengyuan, Liu Wenhao, Liu Fuchang

机构信息

School of Information Science and Technology, Hangzhou Normal University, Hangzhou 311121, China.

出版信息

Sensors (Basel). 2025 Jul 25;25(15):4604. doi: 10.3390/s25154604.

Abstract

Medical image registration is an indispensable preprocessing step to align medical images to a common coordinate system before in-depth analysis. The registration precision is critical to the following analysis. In addition to representative image features, the initial pose settings and multiple poses in images will significantly affect the registration precision, which is largely neglected in state-of-the-art works. To address this, the paper proposes a dual-pose medical image registration algorithm based on improved differential evolution. More specifically, the proposed algorithm defines a composite similarity measurement based on contour points and utilizes this measurement to calculate the similarity between frontal-lateral positional DRR (Digitally Reconstructed Radiograph) images and X-ray images. In order to ensure the accuracy of the registration algorithm in particular dimensions, the algorithm implements a dual-pose registration strategy. A PDE (Phased Differential Evolution) algorithm is proposed for iterative optimization, enhancing the optimization algorithm's ability to globally search in low-dimensional space, aiding in the discovery of global optimal solutions. Extensive experimental results demonstrate that the proposed algorithm provides more accurate similarity metrics compared to conventional registration algorithms; the dual-pose registration strategy largely reduces errors in specific dimensions, resulting in reductions of 67.04% and 71.84%, respectively, in rotation and translation errors. Additionally, the algorithm is more suitable for clinical applications due to its lower complexity.

摘要

医学图像配准是在深入分析之前将医学图像对齐到公共坐标系的一个不可或缺的预处理步骤。配准精度对于后续分析至关重要。除了具有代表性的图像特征外,初始姿态设置和图像中的多个姿态会显著影响配准精度,而这在当前的先进工作中很大程度上被忽视了。为了解决这个问题,本文提出了一种基于改进差分进化的双姿态医学图像配准算法。更具体地说,该算法基于轮廓点定义了一种复合相似性度量,并利用此度量来计算前后位数字重建X线摄影(DRR)图像与X射线图像之间的相似性。为了确保配准算法在特定维度上的准确性,该算法实施了双姿态配准策略。提出了一种相位差分进化(PDE)算法用于迭代优化,增强了优化算法在低维空间中的全局搜索能力,有助于发现全局最优解。大量实验结果表明,与传统配准算法相比,该算法提供了更准确的相似性度量;双姿态配准策略在很大程度上减少了特定维度上的误差, rotation和translation误差分别降低了67.04%和71.84%。此外,该算法由于其较低的复杂度而更适合临床应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9bc8/12349533/34586a3c3863/sensors-25-04604-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验