Suppr超能文献

关于定量变化的药物基因组全基因组关联研究中基线调整的统计学视角。

A statistical perspective on baseline adjustment in pharmacogenomic genome-wide association studies of quantitative change.

作者信息

Zhang Hong, Chhibber Aparna, Shaw Peter M, Mehrotra Devan V, Shen Judong

机构信息

Biostatistics and Research Decision Sciences, Merck & Co., Inc., Rahway, NJ, 07065, USA.

Genetics and Biomarker Sciences, Merck & Co., Inc, West Point, PA, 19446, USA.

出版信息

NPJ Genom Med. 2022 Jun 9;7(1):33. doi: 10.1038/s41525-022-00303-2.

Abstract

In pharmacogenetic (PGx) studies, drug response phenotypes are often measured in the form of change in a quantitative trait before and after treatment. There is some debate in recent literature regarding baseline adjustment, or inclusion of pre-treatment or baseline value as a covariate, in PGx genome-wide association studies (GWAS) analysis. Here, we provide a clear statistical perspective on this baseline adjustment issue by running extensive simulations based on nine statistical models to evaluate the influence of baseline adjustment on type I error and power. We then apply these nine models to analyzing the change in low-density lipoprotein cholesterol (LDL-C) levels with ezetimibe + simvastatin combination therapy compared with simvastatin monotherapy therapy in the 5661 participants of the IMPROVE-IT (IMProved Reduction of Outcomes: Vytroin Efficacy International Trial) PGx GWAS, supporting the conclusions drawn from our simulations. Both simulations and GWAS analyses consistently show that baseline-unadjusted models inflate type I error for the variants associated with baseline value if the baseline value is also associated with change from baseline (e.g., when baseline value is a mediator between a variant and change from baseline), while baseline-adjusted models can control type I error in various scenarios. We thus recommend performing baseline-adjusted analyses in PGx GWASs of quantitative change.

摘要

在药物遗传学(PGx)研究中,药物反应表型通常以治疗前后定量性状的变化形式来衡量。近期文献中对于在PGx全基因组关联研究(GWAS)分析中进行基线调整,即将治疗前或基线值作为协变量纳入,存在一些争议。在此,我们通过基于九种统计模型进行广泛模拟,以评估基线调整对I型错误和检验效能的影响,从而为这一基线调整问题提供清晰的统计学视角。然后,我们将这九种模型应用于分析依折麦布+辛伐他汀联合治疗与辛伐他汀单药治疗相比,在IMPROVE-IT(改善预后:Vytroin国际疗效试验)PGx GWAS的5661名参与者中低密度脂蛋白胆固醇(LDL-C)水平的变化,支持我们从模拟中得出的结论。模拟和GWAS分析均一致表明,如果基线值也与基线变化相关(例如,当基线值是一个变异与基线变化之间的中介时),未调整基线的模型会使与基线值相关的变异的I型错误膨胀,而调整基线的模型在各种情况下都能控制I型错误。因此,我们建议在定量变化的PGx GWAS中进行基线调整分析。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a9a0/9184591/a28609ff3934/41525_2022_303_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验