Singapore Institute for Clinical Sciences, Agency for Science Technology and Research, Singapore 138632, Singapore.
Bioinformatics Institute, Agency for Science Technology and Research, Singapore 138632, Singapore.
Int J Environ Res Public Health. 2022 Jun 1;19(11):6792. doi: 10.3390/ijerph19116792.
The increasing prevalence of gestational diabetes mellitus (GDM) is contributing to the rising global burden of type 2 diabetes (T2D) and intergenerational cycle of chronic metabolic disorders. Primary lifestyle interventions to manage GDM, including second trimester dietary and exercise guidance, have met with limited success due to late implementation, poor adherence and generic guidelines. In this study, we aimed to build a preconception-based GDM predictor to enable early intervention. We also assessed the associations of top predictors with GDM and adverse birth outcomes. Our evolutionary algorithm-based automated machine learning (AutoML) model was implemented with data from 222 Asian multi-ethnic women in a preconception cohort study, Singapore Preconception Study of Long-Term Maternal and Child Outcomes (S-PRESTO). A stacked ensemble model with a gradient boosting classifier and linear support vector machine classifier (stochastic gradient descent training) was derived using genetic programming, achieving an excellent AUC of 0.93 based on four features (glycated hemoglobin A (HbA), mean arterial blood pressure, fasting insulin, triglycerides/HDL ratio). The results of multivariate logistic regression model showed that each 1 mmol/mol increase in preconception HbA was positively associated with increased risks of GDM ( = 0.001, odds ratio (95% CI) 1.34 (1.13-1.60)) and preterm birth ( = 0.011, odds ratio 1.63 (1.12-2.38)). Optimal control of preconception HbA may aid in preventing GDM and reducing the incidence of preterm birth. Our trained predictor has been deployed as a web application that can be easily employed in GDM intervention programs, prior to conception.
妊娠期糖尿病(GDM)的患病率不断上升,是导致 2 型糖尿病(T2D)全球负担增加和代际慢性代谢性疾病发生的原因之一。针对 GDM 的主要生活方式干预措施,包括妊娠中期的饮食和运动指导,由于实施时间晚、依从性差和采用通用指南,效果有限。本研究旨在建立基于孕前的 GDM 预测模型,以便进行早期干预。我们还评估了顶级预测因子与 GDM 和不良出生结局的关联。我们的基于进化算法的自动化机器学习(AutoML)模型是使用来自新加坡孕前长期母婴结局研究(S-PRESTO)预受孕队列研究中的 222 名亚洲多民族妇女的数据来实施的。使用遗传编程,基于四个特征(糖化血红蛋白 A(HbA)、平均动脉血压、空腹胰岛素、甘油三酯/高密度脂蛋白比值),得出了一个具有梯度提升分类器和线性支持向量机分类器(随机梯度下降训练)的堆叠集成模型,其 AUC 达到了 0.93。多变量逻辑回归模型的结果表明,孕前 HbA 每增加 1mmol/mol,GDM 的风险就会增加( = 0.001,比值比(95%CI)为 1.34(1.13-1.60))和早产( = 0.011,比值比为 1.63(1.12-2.38))。最佳控制孕前 HbA 可能有助于预防 GDM 和降低早产发生率。我们的训练有素的预测器已被部署为一个网络应用程序,可在受孕前轻松用于 GDM 干预计划。