AlSaad Rawan, Elhenidy Ali, Tabassum Aliya, Odeh Nour, AboArqoub Eman, Odeh Aya, AlTamimi Maya, Abd-Alrazaq Alaa, Thomas Rajat, Bashir Mohammed, Sheikh Javaid
AI Center for Precision Health, Weill Cornell Medicine-Qatar, Doha, Qatar.
Computer Engineering and Control Systems Department, Mansoura University, Mansoura, Egypt.
J Diabetes Sci Technol. 2025 Aug 25:19322968251355967. doi: 10.1177/19322968251355967.
Artificial intelligence (AI) has emerged as a transformative tool for advancing gestational diabetes mellitus (GDM) care, offering dynamic, data-driven methods for early detection, management, and personalized intervention.
This systematic review aims to comprehensively explore and synthesize the use of AI models in GDM care, including screening, diagnosis, management, and prediction of maternal and neonatal outcomes. Specifically, we examine (1) study designs and population characteristics; (2) the use of AI across different aspects of GDM care; (3) types of input data used for AI modeling; and (4) AI model types, validation strategies, and performance metrics.
A systematic search was conducted across six electronic databases, identifying 126 eligible studies published up to February 2025. Data extraction and quality appraisal were independently conducted by six reviewers, using a modified version of the Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2) tool for risk of bias assessment.
Among 126 studies, 75% employed retrospective designs, with sample sizes ranging from 17 to over 100 000 participants. Most AI applications (85%) focused on early GDM prediction, while fewer addressed management, outcomes, or monitoring. Classical machine learning dominated (84%), with logistic regression and random forest frequently used. Internal validation was common (68%), but external validation was rare (6%). Our risk of bias appraisal indicated an overall moderate-to-good methodological quality, with notable deficiencies in analysis reporting.
AI demonstrates strong potential to improve GDM prediction, screening, and management. Nonetheless, broader validation, enhanced model interpretability, and prospective studies in diverse populations are needed to translate these technologies into clinical practice.
人工智能(AI)已成为推进妊娠期糖尿病(GDM)护理的变革性工具,提供了动态的、数据驱动的早期检测、管理和个性化干预方法。
本系统评价旨在全面探索和综合人工智能模型在GDM护理中的应用,包括筛查、诊断、管理以及对孕产妇和新生儿结局的预测。具体而言,我们考察(1)研究设计和人群特征;(2)人工智能在GDM护理不同方面的应用;(3)用于人工智能建模的输入数据类型;以及(4)人工智能模型类型、验证策略和性能指标。
对六个电子数据库进行了系统检索,确定了截至2025年2月发表的126项符合条件的研究。由六名评审员独立进行数据提取和质量评估,使用诊断准确性研究质量评估-2(QUADAS-2)工具的修改版进行偏倚风险评估。
在126项研究中,75%采用回顾性设计,样本量从17名到超过100000名参与者不等。大多数人工智能应用(85%)侧重于早期GDM预测,而涉及管理、结局或监测的较少。经典机器学习占主导地位(84%),经常使用逻辑回归和随机森林。内部验证很常见(68%),但外部验证很少见(6%)。我们的偏倚风险评估表明总体方法质量为中等至良好,但分析报告存在明显缺陷。
人工智能在改善GDM预测、筛查和管理方面显示出强大潜力。尽管如此,需要更广泛的验证、增强模型可解释性以及在不同人群中进行前瞻性研究,以便将这些技术转化为临床实践。