Biosciences Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO 80401, USA.
Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bangkok 10150, Thailand.
Int J Mol Sci. 2022 May 28;23(11):6070. doi: 10.3390/ijms23116070.
Microbial conversion of biomass relies on a complex combination of enzyme systems promoting synergy to overcome biomass recalcitrance. Some thermophilic bacteria have been shown to exhibit particularly high levels of cellulolytic activity, making them of particular interest for biomass conversion. These bacteria use varying combinations of CAZymes that vary in complexity from a single catalytic domain to large multi-modular and multi-functional architectures to deconstruct biomass. Since the discovery of CelA from Caldicellulosiruptor bescii which was identified as one of the most active cellulase so far identified, the search for efficient multi-modular and multi-functional CAZymes has intensified. One of these candidates, GuxA (previously Acel_0615), was recently shown to exhibit synergy with other CAZymes in C. bescii, leading to a dramatic increase in growth on biomass when expressed in this host. GuxA is a multi-modular and multi-functional enzyme from whose catalytic domains include a xylanase/endoglucanase GH12 and an exoglucanase GH6, representing a unique combination of these two glycoside hydrolase families in a single CAZyme. These attributes make GuxA of particular interest as a potential candidate for thermophilic industrial enzyme preparations. Here, we present a more complete characterization of GuxA to understand the mechanism of its activity and substrate specificity. In addition, we demonstrate that GuxA exhibits high levels of synergism with E1, a companion endoglucanase from A. cellulolyticus. We also present a crystal structure of one of the GuxA domains and dissect the structural features that might contribute to its thermotolerance.
微生物对生物质的转化依赖于一系列复杂的酶系统的协同作用,以克服生物质的抗降解性。一些嗜热细菌表现出特别高的纤维素酶活性,因此它们对生物质转化特别感兴趣。这些细菌使用不同组合的 CAZymes,其复杂性从单个催化结构域到大型多模块和多功能结构域不等,用于解构生物质。自从从 Caldicellulosiruptor bescii 中发现 CelA 以来,它被鉴定为迄今为止鉴定出的最活跃的纤维素酶之一,人们对寻找高效的多模块和多功能 CAZymes 的兴趣日益浓厚。其中一个候选者 GuxA(以前称为 Acel_0615)最近被证明在 C. bescii 中与其他 CAZymes 具有协同作用,当在该宿主中表达时,会导致在生物质上的生长显著增加。GuxA 是一种多模块和多功能酶,其催化结构域包括木聚糖酶/内切葡聚糖酶 GH12 和外切葡聚糖酶 GH6,代表这两种糖苷水解酶家族在单个 CAZyme 中的独特组合。这些特性使 GuxA 作为潜在的嗜热工业酶制剂候选物特别有趣。在这里,我们对 GuxA 进行了更完整的表征,以了解其活性和底物特异性的机制。此外,我们证明 GuxA 与来自 A. cellulolyticus 的伴侣内切葡聚糖酶 E1 表现出高水平的协同作用。我们还展示了 GuxA 的一个结构域的晶体结构,并剖析了可能有助于其耐热性的结构特征。