Department of Genetics, University of Georgia, Athens, GA USA ; Oak Ridge National Laboratory, The BioEnergy Science Center, Oak Ridge, TN USA.
National Renewable Energy Laboratory, Biosciences Center, Golden, CO USA ; Oak Ridge National Laboratory, The BioEnergy Science Center, Oak Ridge, TN USA.
Biotechnol Biofuels. 2015 Aug 13;8:113. doi: 10.1186/s13068-015-0296-x. eCollection 2015.
The Caldicellulosiruptor bescii genome encodes a potent set of carbohydrate-active enzymes (CAZymes), found primarily as multi-domain enzymes that exhibit high cellulolytic and hemicellulolytic activity on and allow utilization of a broad range of substrates, including plant biomass without conventional pretreatment. CelA, the most abundant cellulase in the C. bescii secretome, uniquely combines a GH9 endoglucanase and a GH48 exoglucanase in one protein. The most effective commercial enzyme cocktails used in vitro to pretreat biomass are derived from fungal cellulases (cellobiohydrolases, endoglucanases and a β-d-glucosidases) that act synergistically to release sugars for microbial conversion. The C. bescii genome contains six GH5 domains in five different open reading frames. Four exist in multi-domain proteins and two as single catalytic domains. E1 is a GH5 endoglucanase reported to have high specific activity and simple architecture and is active at the growth temperature of C. bescii. E1 is an endo-1,4-β-glucanase linked to a family 2 carbohydrate-binding module shown to bind primarily to cellulosic substrates. We tested if the addition of this protein to the C. bescii secretome would improve its cellulolytic activity.
In vitro analysis of E1 and CelA shows synergistic interaction. The E1 gene from Acidothermus cellulolyticus was cloned and expressed in C. bescii under the transcriptional control of the C. bescii S-layer promoter, and secretion was directed by the addition of the C. bescii CelA signal peptide sequence. The vector was integrated into the C. bescii chromosome at a site previously showing no detectable detrimental consequence. Increased activity of the secretome of the strain containing E1 was observed on both carboxymethylcellulose (CMC) and Avicel. Activity against CMC increased on average 10.8 % at 65 °C and 12.6 % at 75 °C. Activity against Avicel increased on average 17.5 % at 65 °C and 16.4 % at 75 °C.
Expression and secretion of E1 in C. bescii enhanced the cellulolytic ability of its secretome. These data agree with in vitro evidence that E1 acts synergistically with CelA to digest cellulose and offer the possibility of engineering additional enzymes for improved biomass deconstruction with the knowledge that C. bescii can express a gene from Acidothermus, and perhaps other heterologous genes, effectively.
巴氏纤维单胞菌基因组编码了一组强有力的碳水化合物活性酶(CAZymes),这些酶主要以多结构域酶的形式存在,表现出对纤维素和半纤维素的高活性,并能利用包括未经传统预处理的植物生物质在内的广泛底物。CelA 是巴氏纤维单胞菌 secretome 中最丰富的纤维素酶,它将 GH9 内切葡聚糖酶和 GH48 外切葡聚糖酶独特地结合在一个蛋白质中。最有效的商业酶混合物用于体外预处理生物质来自真菌纤维素酶(纤维二糖水解酶、内切葡聚糖酶和 β-d-葡萄糖苷酶),它们协同作用释放糖,以促进微生物转化。巴氏纤维单胞菌基因组包含五个不同开放阅读框中的六个 GH5 结构域。其中四个存在于多结构域蛋白中,两个作为单一催化结构域。E1 是一种 GH5 内切葡聚糖酶,据报道具有高比活性和简单的结构,在巴氏纤维单胞菌的生长温度下具有活性。E1 是一种内-1,4-β-葡聚糖酶,与家族 2 碳水化合物结合模块相连,该模块被证明主要与纤维素底物结合。我们测试了将这种蛋白质添加到巴氏纤维单胞菌 secretome 是否会提高其纤维素酶活性。
E1 和 CelA 的体外分析表明存在协同作用。从嗜热酸梭菌中克隆并在巴氏纤维单胞菌中表达了 E1 基因,转录受巴氏纤维单胞菌 S 层启动子的控制,分泌由巴氏纤维单胞菌 CelA 信号肽序列引导。该载体整合到巴氏纤维单胞菌染色体上的一个位点,该位点以前没有检测到有害后果。含有 E1 的菌株的 secretome 在羧甲基纤维素(CMC)和 Avicel 上的活性都增加了。在 65°C 时,CMC 的活性平均增加了 10.8%,在 75°C 时,CMC 的活性平均增加了 12.6%。在 65°C 时,Avicel 的活性平均增加了 17.5%,在 75°C 时,Avicel 的活性平均增加了 16.4%。
E1 在巴氏纤维单胞菌中的表达和分泌增强了其 secretome 的纤维素酶活性。这些数据与体外证据一致,即 E1 与 CelA 协同作用消化纤维素,并提供了通过工程改造添加其他酶以提高生物质解构效率的可能性,同时知道巴氏纤维单胞菌可以有效地表达来自嗜热酸菌的基因,也许还可以表达其他异源基因。