Suppr超能文献

来自嗜热栖热放线菌的一个碳水化合物活性酶(CAZyme)盒在体内的协同活性显著提高了嗜热栖热放线菌胞外蛋白质组的纤维素分解活性。

In vivo synergistic activity of a CAZyme cassette from Acidothermus cellulolyticus significantly improves the cellulolytic activity of the C. bescii exoproteome.

作者信息

Kim Sun-Ki, Chung Daehwan, Himmel Michael E, Bomble Yannick J, Westpheling Janet

机构信息

Department of Genetics, University of Georgia, Athens, Georgia, 30602.

The BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37831.

出版信息

Biotechnol Bioeng. 2017 Nov;114(11):2474-2480. doi: 10.1002/bit.26366. Epub 2017 Aug 3.

Abstract

The use of microbial cells to convert plant biomass directly to fuels and chemicals is referred to as consolidated bioprocessing (CBP). Members of the bacterial genus, Caldicellulosiruptor (Gram-positive, anaerobic hyperthermophiles) are capable of deconstructing plant biomass without enzymatic or chemical pretreatment. This is accomplished by the production and secretion of free, multi-domain enzymes that outperform commercial enzyme cocktails on some substrates. Here, we show that the exoproteome of Caldicellulosiruptor bescii may be enhanced by the heterologous expression of enzymes from Acidothermus cellulolyticus that act synergistically to improve sugar release from complex substrates; as well as improve cell growth. In this work, co-expression of the A. cellulolyticus Acel_0615 β-glucanase (GH6 and GH12) and E1 endoglucanase (GH5) enzymes resulted in an increase in the activity of the exoproteome on Avicel; as well as an increase in growth of C. bescii on Avicel compared to the parental strain or the strain expressing the β-glucanase alone. Our ability to engineer the composition and effectiveness of the exoproteome of these bacteria provides insight into the natural mechanism of plant cell wall deconstruction, as well as future directions for improving CBP. Biotechnol. Bioeng. 2017;114: 2474-2480. © 2017 Wiley Periodicals, Inc.

摘要

利用微生物细胞将植物生物质直接转化为燃料和化学品的过程被称为整合生物加工(CBP)。嗜热栖热菌属(革兰氏阳性、厌氧嗜热菌)的成员能够在无需酶或化学预处理的情况下解构植物生物质。这是通过产生和分泌游离的多结构域酶来实现的,这些酶在某些底物上的表现优于商业酶混合物。在此,我们表明,通过异源表达来自解纤维素嗜酸菌的酶,嗜热栖热菌的胞外蛋白质组可能会得到增强,这些酶协同作用以改善从复杂底物中释放糖的能力;同时还能促进细胞生长。在这项工作中,解纤维素嗜酸菌的Acel_0615β-葡聚糖酶(GH6和GH12)和E1内切葡聚糖酶(GH5)的共表达导致胞外蛋白质组对微晶纤维素的活性增加;与亲本菌株或单独表达β-葡聚糖酶的菌株相比,嗜热栖热菌在微晶纤维素上的生长也有所增加。我们对这些细菌胞外蛋白质组的组成和有效性进行工程改造的能力,为深入了解植物细胞壁解构的自然机制以及改进整合生物加工的未来方向提供了思路。《生物技术与生物工程》2017年;114:2474 - 2480。©2017威利期刊公司

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验