Research Group for Implantable Microsystems, Faculty of Information Technology & Bionics, Pázmány Péter Catholic University, H-1083 Budapest, Hungary.
Sensors (Basel). 2022 May 31;22(11):4191. doi: 10.3390/s22114191.
Electrochemical impedance spectroscopy (EIS) is the golden tool for many emerging biomedical applications that describes the behavior, stability, and long-term durability of physical interfaces in a specific range of frequency. Impedance measurements of any biointerface during in vivo and clinical applications could be used for assessing long-term biopotential measurements and diagnostic purposes. In this paper, a novel approach to predicting impedance behavior is presented and consists of a dimensional reduction procedure by converting EIS data over many days of an experiment into a one-dimensional sequence of values using a novel formula called day factor (DF) and then using a long short-term memory (LSTM) network to predict the future behavior of the DF. Three neural interfaces of different material compositions with long-term in vitro aging tests were used to validate the proposed approach. The results showed good accuracy in predicting the quantitative change in the impedance behavior (i.e., higher than 75%), in addition to good prediction of the similarity between the actual and the predicted DF signals, which expresses the impedance fluctuations among soaking days. The DF approach showed a lower computational time and algorithmic complexity compared with principal component analysis (PCA) and provided the ability to involve or emphasize several important frequencies or impedance range in a more flexible way.
电化学阻抗谱(EIS)是许多新兴生物医学应用的黄金工具,它描述了物理界面在特定频率范围内的行为、稳定性和长期耐久性。在体内和临床应用中,对任何生物界面的阻抗测量都可用于评估长期生物电位测量和诊断目的。本文提出了一种新的阻抗行为预测方法,该方法通过使用一种称为日因子(DF)的新公式将实验中多天的 EIS 数据转换为一维序列值,从而实现降维处理,然后使用长短期记忆(LSTM)网络来预测 DF 的未来行为。使用三种具有长期体外老化测试的不同材料组成的神经接口来验证所提出的方法。结果表明,该方法在预测阻抗行为的定量变化方面具有较高的准确性(即高于 75%),并且在预测实际和预测 DF 信号之间的相似性方面也具有较好的效果,该相似性表示了浸泡日之间的阻抗波动。与主成分分析(PCA)相比,DF 方法具有更低的计算时间和算法复杂度,并提供了以更灵活的方式涉及或强调几个重要频率或阻抗范围的能力。
Sensors (Basel). 2022-5-31
IEEE Trans Biomed Circuits Syst. 2017-4
J Neural Eng. 2016-8
Annu Int Conf IEEE Eng Med Biol Soc. 2011
IEEE Trans Biomed Circuits Syst. 2024-2
Annu Int Conf IEEE Eng Med Biol Soc. 2018-7
Acta Biomater. 2015-12-12
Annu Int Conf IEEE Eng Med Biol Soc. 2017-7
Diagnostics (Basel). 2024-5-25
Sensors (Basel). 2022-3-29
Polymers (Basel). 2022-3-4
Front Bioeng Biotechnol. 2021-10-1
Sensors (Basel). 2021-10-1
Microsyst Nanoeng. 2020-6-1
Int J Mol Sci. 2021-7-16