Suppr超能文献

使用可植入硅光子微器件进行红外神经刺激与抑制

Infrared neural stimulation and inhibition using an implantable silicon photonic microdevice.

作者信息

Horváth Ágoston Csaba, Borbély Sándor, Boros Örs Csanád, Komáromi Lili, Koppa Pál, Barthó Péter, Fekete Zoltán

机构信息

Research Group for Implantable Microsystems, Faculty of Information Technology & Bionics, Pázmány Péter Catholic University, Budapest, Hungary.

Microsystems Laboratory, Institute for Technical Physics & Material Science, Centre for Energy Research, Budapest, Hungary.

出版信息

Microsyst Nanoeng. 2020 Jun 1;6:44. doi: 10.1038/s41378-020-0153-3. eCollection 2020.

Abstract

Brain is one of the most temperature sensitive organs. Besides the fundamental role of temperature in cellular metabolism, thermal response of neuronal populations is also significant during the evolution of various neurodegenerative diseases. For such critical environmental factor, thorough mapping of cellular response to variations in temperature is desired in the living brain. So far, limited efforts have been made to create complex devices that are able to modulate temperature, and concurrently record multiple features of the stimulated region. In our work, the in vivo application of a multimodal photonic neural probe is demonstrated. Optical, thermal, and electrophysiological functions are monolithically integrated in a single device. The system facilitates spatial and temporal control of temperature distribution at high precision in the deep brain tissue through an embedded infrared waveguide, while it provides recording of the artefact-free electrical response of individual cells at multiple locations along the probe shaft. Spatial distribution of the optically induced temperature changes is evaluated through in vitro measurements and a validated multi-physical model. The operation of the multimodal microdevice is demonstrated in the rat neocortex and in the hippocampus to increase or suppress firing rate of stimulated neurons in a reversible manner using continuous wave infrared light ( = 1550 nm). Our approach is envisioned to be a promising candidate as an advanced experimental toolset to reveal thermally evoked responses in the deep neural tissue.

摘要

大脑是对温度最敏感的器官之一。除了温度在细胞代谢中的基本作用外,在各种神经退行性疾病的发展过程中,神经元群体的热反应也很重要。对于这样一个关键的环境因素,需要在活体大脑中全面绘制细胞对温度变化的反应。到目前为止,在制造能够调节温度并同时记录受刺激区域多种特征的复杂设备方面所做的努力有限。在我们的工作中,展示了一种多模态光子神经探针的体内应用。光学、热学和电生理功能被整体集成在一个单一设备中。该系统通过一个嵌入式红外波导,在深部脑组织中实现对温度分布的高精度时空控制,同时它还能沿探针轴在多个位置记录单个细胞无伪迹的电反应。通过体外测量和一个经过验证的多物理模型来评估光诱导温度变化的空间分布。在大鼠新皮层和海马体中展示了这种多模态微设备的操作,使用连续波红外光(λ = 1550 nm)以可逆方式增加或抑制受刺激神经元的放电率。我们的方法有望成为一种有前途的候选技术,作为一种先进的实验工具集来揭示深部神经组织中的热诱发反应。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4536/8433474/38850f0a0304/41378_2020_153_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验