文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

具有电化学修饰微电极的灵活神经探针,用于无伪影的光遗传应用。

Flexible Neural Probes with Electrochemical Modified Microelectrodes for Artifact-Free Optogenetic Applications.

机构信息

Wenzhou Institute of Hangzhou Dianzi University, Wenzhou 325038, China.

MOE Engineering Research Center of Smart Microsensors and Microsystems, School of Electronics and Information, Hangzhou Dianzi University, Hangzhou 310018, China.

出版信息

Int J Mol Sci. 2021 Oct 26;22(21):11528. doi: 10.3390/ijms222111528.


DOI:10.3390/ijms222111528
PMID:34768957
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8584107/
Abstract

With the rapid increase in the use of optogenetics to investigate nervous systems, there is high demand for neural interfaces that can simultaneously perform optical stimulation and electrophysiological recording. However, high-magnitude stimulation artifacts have prevented experiments from being conducted at a desirably high temporal resolution. Here, a flexible polyimide-based neural probe with polyethylene glycol (PEG) packaged optical fiber and Pt-Black/PEDOT-GO (graphene oxide doped poly(3,4-ethylene-dioxythiophene)) modified microelectrodes was developed to reduce the stimulation artifacts that are induced by photoelectrochemical (PEC) and photovoltaic (PV) effects. The advantages of this design include quick and accurate implantation and high-resolution recording capacities. Firstly, electrochemical performance of the modified microelectrodes is significantly improved due to the large specific surface area of the GO layer. Secondly, good mechanical and electrochemical stability of the modified microelectrodes is obtained by using Pt-Black as bonding layer. Lastly, bench noise recordings revealed that PEC noise amplitude of the modified neural probes could be reduced to less than 50 µV and no PV noise was detected when compared to silicon-based neural probes. The results indicate that this device is a promising optogenetic tool for studying local neural circuits.

摘要

随着光遗传学在神经系统研究中的广泛应用,人们对能够同时进行光刺激和电生理记录的神经接口的需求也日益增加。然而,高强度的刺激伪影一直阻碍着实验在理想的高时间分辨率下进行。在这里,我们开发了一种基于聚酰亚胺的柔性神经探针,该探针采用聚乙二醇(PEG)封装的光纤和 Pt-Black/PEDOT-GO(掺杂氧化石墨烯的聚(3,4-亚乙基二氧噻吩))修饰的微电极,以减少光电化学(PEC)和光伏(PV)效应引起的刺激伪影。这种设计的优点包括快速、准确的植入和高分辨率的记录能力。首先,GO 层的大比表面积显著提高了修饰微电极的电化学性能。其次,通过使用 Pt-Black 作为结合层,获得了修饰微电极的良好的机械和电化学稳定性。最后,台噪声记录表明,与硅基神经探针相比,修饰后的神经探针的 PEC 噪声幅度可降低至 50µV 以下,并且未检测到 PV 噪声。结果表明,该装置是研究局部神经回路的一种很有前途的光遗传学工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/faa2/8584107/907f50c59ea9/ijms-22-11528-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/faa2/8584107/01feb189f66d/ijms-22-11528-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/faa2/8584107/548e2fdee616/ijms-22-11528-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/faa2/8584107/ffdc59624315/ijms-22-11528-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/faa2/8584107/2b52811fde3c/ijms-22-11528-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/faa2/8584107/47dc83577895/ijms-22-11528-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/faa2/8584107/d3e0c3362703/ijms-22-11528-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/faa2/8584107/907f50c59ea9/ijms-22-11528-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/faa2/8584107/01feb189f66d/ijms-22-11528-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/faa2/8584107/548e2fdee616/ijms-22-11528-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/faa2/8584107/ffdc59624315/ijms-22-11528-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/faa2/8584107/2b52811fde3c/ijms-22-11528-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/faa2/8584107/47dc83577895/ijms-22-11528-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/faa2/8584107/d3e0c3362703/ijms-22-11528-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/faa2/8584107/907f50c59ea9/ijms-22-11528-g007.jpg

相似文献

[1]
Flexible Neural Probes with Electrochemical Modified Microelectrodes for Artifact-Free Optogenetic Applications.

Int J Mol Sci. 2021-10-26

[2]
The use of a double-layer platinum black-conducting polymer coating for improvement of neural recording and mitigation of photoelectric artifact.

Biosens Bioelectron. 2019-8-29

[3]
Flexible Neural Probes with Optical Artifact-Suppressing Modification and Biofriendly Polypeptide Coating.

Micromachines (Basel). 2022-1-27

[4]
A novel carbon tipped single micro-optrode for combined optogenetics and electrophysiology.

PLoS One. 2018-3-7

[5]
Proximal and distal modulation of neural activity by spatially confined optogenetic activation with an integrated high-density optoelectrode.

J Neurophysiol. 2018-7-1

[6]
3D silicon neural probe with integrated optical fibers for optogenetic modulation.

Lab Chip. 2015-7-21

[7]
An artefact-resist optrode with internal shielding structure for low-noise neural modulation.

J Neural Eng. 2020-8-5

[8]
An integrated μLED optrode for optogenetic stimulation and electrical recording.

IEEE Trans Biomed Eng. 2012-9-6

[9]
Flexible bioelectrodes with enhanced wrinkle microstructures for reliable electrochemical modification and neuromodulation in vivo.

Biosens Bioelectron. 2019-4-17

[10]
Polydopamine-doped conductive polymer microelectrodes for neural recording and stimulation.

J Neurosci Methods. 2019-7-18

引用本文的文献

[1]
Flexible electronic-photonic 3D integration from ultrathin polymer chiplets.

Npj Flex Electron. 2024

[2]
Enhancing Flexible Neural Probe Performance via Platinum Deposition: Impedance Stability under Various Conditions and In Vivo Neural Signal Monitoring.

Micromachines (Basel). 2024-8-22

[3]
Fully flexible implantable neural probes for electrophysiology recording and controlled neurochemical modulation.

Microsyst Nanoeng. 2024-6-27

[4]
Flexible high-density microelectrode arrays for closed-loop brain-machine interfaces: a review.

Front Neurosci. 2024-4-15

[5]
A Review: Research Progress of Neural Probes for Brain Research and Brain-Computer Interface.

Biosensors (Basel). 2022-12-14

[6]
Dimensionality Reduction and Prediction of Impedance Data of Biointerface.

Sensors (Basel). 2022-5-31

[7]
Flexible Neural Probes with Optical Artifact-Suppressing Modification and Biofriendly Polypeptide Coating.

Micromachines (Basel). 2022-1-27

本文引用的文献

[1]
Design and microfabrication strategies for thin-film, flexible optical neural implant.

Annu Int Conf IEEE Eng Med Biol Soc. 2020-7

[2]
An artefact-resist optrode with internal shielding structure for low-noise neural modulation.

J Neural Eng. 2020-8-5

[3]
Artifact-free and high-temporal-resolution in vivo opto-electrophysiology with microLED optoelectrodes.

Nat Commun. 2020-4-28

[4]
Reconfigurable nanophotonic silicon probes for sub-millisecond deep-brain optical stimulation.

Nat Biomed Eng. 2020-2-12

[5]
Flexible and stretchable opto-electric neural interface for low-noise electrocorticogram recordings and neuromodulation in vivo.

Biosens Bioelectron. 2020-1-9

[6]
The use of a double-layer platinum black-conducting polymer coating for improvement of neural recording and mitigation of photoelectric artifact.

Biosens Bioelectron. 2019-8-29

[7]
State-of-the-art MEMS and microsystem tools for brain research.

Microsyst Nanoeng. 2017-1-2

[8]
Elastocapillary self-assembled neurotassels for stable neural activity recordings.

Sci Adv. 2019-3-27

[9]
Dual color optogenetic control of neural populations using low-noise, multishank optoelectrodes.

Microsyst Nanoeng. 2018

[10]
Fabrication and modification of implantable optrode arrays for optogenetic applications.

Biophys Rep. 2018

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索