Suppr超能文献

基于计算智能的皮肤镜图像黑色素瘤检测与分类。

Computational Intelligence-Based Melanoma Detection and Classification Using Dermoscopic Images.

机构信息

College of Computer Engineering and Sciences, Prince Sattam Bin Abdulaziz Univeristy, Al Kharj, Saudi Arabia.

Department of Computer Science, King Khalid University, Abha, Saudi Arabia.

出版信息

Comput Intell Neurosci. 2022 May 31;2022:2370190. doi: 10.1155/2022/2370190. eCollection 2022.

Abstract

Melanoma is a kind of skin cancer caused by the irregular development of pigment-producing cells. Since melanoma detection efficiency is limited to different factors such as poor contrast among lesions and nearby skin regions, and visual resemblance among melanoma and non-melanoma lesions, intelligent computer-aided diagnosis (CAD) models are essential. Recently, computational intelligence (CI) and deep learning (DL) techniques are utilized for effective decision-making in the biomedical field. In addition, the fast-growing advancements in computer-aided surgeries and recent progress in molecular, cellular, and tissue engineering research have made CI an inevitable part of biomedical applications. In this view, the research work here develops a novel computational intelligence-based melanoma detection and classification technique using dermoscopic images (CIMDC-DIs). The proposed CIMDC-DI model encompasses different subprocesses. Primarily, bilateral filtering with fuzzy k-means (FKM) clustering-based image segmentation is applied as a preprocessing step. Besides, NasNet-based feature extractor with stochastic gradient descent is applied for feature extraction. Finally, the manta ray foraging optimization (MRFO) algorithm with a cascaded neural network (CNN) is exploited for the classification process. To ensure the potential efficiency of the CIMDC-DI technique, we conducted a wide-ranging simulation analysis, and the results reported its effectiveness over the existing recent algorithms with the maximum accuracy of 97.50%.

摘要

黑色素瘤是一种由色素产生细胞不规则发育引起的皮肤癌。由于黑色素瘤检测效率受到病变和附近皮肤区域之间对比度差、黑色素瘤和非黑色素瘤病变之间视觉相似性等不同因素的限制,智能计算机辅助诊断 (CAD) 模型是必不可少的。最近,计算智能 (CI) 和深度学习 (DL) 技术被用于生物医学领域的有效决策。此外,计算机辅助手术的快速发展和分子、细胞和组织工程研究的最新进展使 CI 成为生物医学应用中不可或缺的一部分。有鉴于此,本研究工作开发了一种使用皮肤镜图像的基于计算智能的黑色素瘤检测和分类技术 (CIMDC-DI)。所提出的 CIMDC-DI 模型包含不同的子过程。首先,应用双边滤波和基于模糊 k-均值 (FKM) 聚类的图像分割作为预处理步骤。此外,应用基于随机梯度下降的 NasNet 特征提取器进行特征提取。最后,使用带有级联神经网络 (CNN) 的蝠鲼觅食优化 (MRFO) 算法进行分类过程。为了确保 CIMDC-DI 技术的潜在效率,我们进行了广泛的模拟分析,结果表明该技术的有效性优于现有的最新算法,准确率最高可达 97.50%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d1ee/9173896/4ac63c0a27f1/CIN2022-2370190.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验