Suppr超能文献

基于皮肤镜图像的颜色和纹理特征的自动分割和黑素瘤检测。

Automatic segmentation and melanoma detection based on color and texture features in dermoscopic images.

机构信息

LTII Laboratory University of Bejaia-Algeria, Faculty of Technology, University of Bejaia, Bejaia, Algeria.

Electrical Engineering Department, University of Bouira, Bouira, Algeria.

出版信息

Skin Res Technol. 2022 Mar;28(2):203-211. doi: 10.1111/srt.13111. Epub 2021 Nov 15.

Abstract

PURPOSE

Melanoma is known as the most aggressive form of skin cancer and one of the fastest growing malignant tumors worldwide. Several computer-aided diagnosis systems for melanoma have been proposed, still, the algorithms encounter difficulties in the early stage of lesions. This paper aims to discriminate melanoma and benign skin lesion in dermoscopic images.

METHODS

The proposed algorithm is based on the color and texture of skin lesions by introducing a novel feature extraction technique. The algorithm uses an automatic segmentation based on k-means generating a fairly accurate mask for each lesion. The feature extraction consists of the existing and novel color and texture attributes measuring how color and texture vary inside the lesion. To find the optimal results, all the attributes are extracted from lesions in five different color spaces (RGB, HSV, Lab, XYZ, and YCbCr) and used as the inputs for three classifiers (K nearest neighbors, support vector machine , and artificial neural network).

RESULTS

The PH2 set is used to assess the performance of the proposed algorithm. The results of our algorithm are compared to the results of published articles that used the same dataset, and it shows that the proposed method outperforms the state of the art by attaining a sensitivity of 99.25%, specificity of 99.58%, and accuracy of 99.51%.

CONCLUSION

The final results show that the colors combined with texture are powerful and relevant attributes for melanoma detection and show improvement over the state of the art.

摘要

目的

黑色素瘤是最具侵袭性的皮肤癌之一,也是全球增长最快的恶性肿瘤之一。已经提出了几种用于黑色素瘤的计算机辅助诊断系统,但这些算法在病变的早期阶段仍会遇到困难。本文旨在对皮肤镜图像中的黑色素瘤和良性皮肤病变进行区分。

方法

所提出的算法基于皮肤病变的颜色和纹理,通过引入一种新的特征提取技术。该算法使用基于 k-均值的自动分割,为每个病变生成一个相当准确的蒙版。特征提取包括现有的和新的颜色和纹理属性,用于衡量病变内部颜色和纹理的变化。为了找到最佳结果,所有属性都是从五个不同颜色空间(RGB、HSV、Lab、XYZ 和 YCbCr)中的病变中提取出来的,并作为三个分类器(K 最近邻、支持向量机和人工神经网络)的输入。

结果

使用 PH2 集来评估所提出算法的性能。将我们的算法结果与使用相同数据集的已发表文章的结果进行比较,结果表明,所提出的方法通过达到 99.25%的敏感性、99.58%的特异性和 99.51%的准确性,优于现有技术。

结论

最终结果表明,颜色与纹理相结合是黑色素瘤检测的有力且相关的属性,并在现有技术基础上有所改进。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验