Suppr超能文献

模糊聚类模型在运动训练动作分类中的应用。

Application of Fuzzy Clustering Model in the Classification of Sports Training Movements.

机构信息

School of Physical Education, Liaocheng University, Liaocheng, Shandong 252000, China.

出版信息

Comput Intell Neurosci. 2022 May 31;2022:4308283. doi: 10.1155/2022/4308283. eCollection 2022.

Abstract

In order to accurately analyze the movements of sports training using artificial intelligence techniques, an improved fuzzy clustering model is proposed in this study. The fuzzy C-means is used to granulate the multilabel space, and the correlation degree between different variable labels is obtained through information gain. Aiming at the problem of multilabel information classification, an appropriate membership function is selected, which is used to map all information samples and obtain the membership degree of its category. Considering the slow training efficiency of fuzzy support vector machine, the clustering method is used to optimize the fuzzy support vector machine, establish the optimal hyperplane, and complete the classification according to their respective attributes in high-dimensional space. Finally, the proposed algorithm and other algorithms are experimentally compared on the published KTH and Weizmann human behavior data sets. Experimental results show that the proposed method is effective and robust.

摘要

为了使用人工智能技术准确分析运动训练的动作,本研究提出了一种改进的模糊聚类模型。该模型采用模糊 C 均值对多标签空间进行粒度划分,并通过信息增益获得不同变量标签之间的相关度。针对多标签信息分类问题,选择了合适的隶属度函数,用于映射所有信息样本,并获得其类别隶属度。考虑到模糊支持向量机训练效率较慢的问题,使用聚类方法对模糊支持向量机进行优化,建立最优超平面,根据其在高维空间中的各自属性完成分类。最后,在已发布的 KTH 和 Weizmann 人体行为数据集上对所提出的算法和其他算法进行了实验比较。实验结果表明,该方法是有效且稳健的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4fd3/9173957/c65037dd5734/CIN2022-4308283.001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验