文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

肠道微生物遇见机器学习:在健康和疾病中深入了解肠道微生物组的下一步。

Gut Microbes Meet Machine Learning: The Next Step towards Advancing Our Understanding of the Gut Microbiome in Health and Disease.

机构信息

Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy.

Department of Internal Medicine, Yale School of Medicine, Yale University, New Haven, CT 06510, USA.

出版信息

Int J Mol Sci. 2023 Mar 9;24(6):5229. doi: 10.3390/ijms24065229.


DOI:10.3390/ijms24065229
PMID:36982303
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10049444/
Abstract

The human gut microbiome plays a crucial role in human health and has been a focus of increasing research in recent years. Omics-based methods, such as metagenomics, metatranscriptomics, and metabolomics, are commonly used to study the gut microbiome because they provide high-throughput and high-resolution data. The vast amount of data generated by these methods has led to the development of computational methods for data processing and analysis, with machine learning becoming a powerful and widely used tool in this field. Despite the promising results of machine learning-based approaches for analyzing the association between microbiota and disease, there are several unmet challenges. Small sample sizes, disproportionate label distribution, inconsistent experimental protocols, or a lack of access to relevant metadata can all contribute to a lack of reproducibility and translational application into everyday clinical practice. These pitfalls can lead to false models, resulting in misinterpretation biases for microbe-disease correlations. Recent efforts to address these challenges include the construction of human gut microbiota data repositories, improved data transparency guidelines, and more accessible machine learning frameworks; implementation of these efforts has facilitated a shift in the field from observational association studies to experimental causal inference and clinical intervention.

摘要

人类肠道微生物组在人类健康中起着至关重要的作用,近年来已成为研究的焦点。基于组学的方法,如宏基因组学、宏转录组学和代谢组学,常用于研究肠道微生物组,因为它们提供高通量和高分辨率的数据。这些方法产生的大量数据导致了数据处理和分析的计算方法的发展,机器学习成为该领域强大且广泛使用的工具。尽管基于机器学习的方法在分析微生物组与疾病之间的关联方面取得了有希望的结果,但仍存在一些未满足的挑战。小样本量、标签分布不均、实验方案不一致或无法访问相关元数据,都可能导致缺乏可重复性和向日常临床实践的转化应用。这些缺陷可能导致错误的模型,从而导致对微生物-疾病相关性的误解偏差。最近为解决这些挑战所做的努力包括构建人类肠道微生物组数据存储库、改进数据透明度指南和更易于访问的机器学习框架;这些努力的实施促进了该领域从观察性关联研究向实验因果推断和临床干预的转变。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c304/10049444/e773624d9cfb/ijms-24-05229-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c304/10049444/e773624d9cfb/ijms-24-05229-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c304/10049444/e773624d9cfb/ijms-24-05229-g001.jpg

相似文献

[1]
Gut Microbes Meet Machine Learning: The Next Step towards Advancing Our Understanding of the Gut Microbiome in Health and Disease.

Int J Mol Sci. 2023-3-9

[2]
Machine learning for data integration in human gut microbiome.

Microb Cell Fact. 2022-11-23

[3]
Recent advances of machine learning applications in human gut microbiota study: from observational analysis toward causal inference and clinical intervention.

Curr Opin Biotechnol. 2023-2

[4]
Understanding gut microbiome-based machine learning platforms: A review on therapeutic approaches using deep learning.

Chem Biol Drug Des. 2024-3

[5]
It takes guts to learn: machine learning techniques for disease detection from the gut microbiome.

Emerg Top Life Sci. 2021-12-21

[6]
Application of metagenomics in the human gut microbiome.

World J Gastroenterol. 2015-1-21

[7]
Adjusting for age improves identification of gut microbiome alterations in multiple diseases.

Elife. 2020-3-11

[8]
Multi-omics approaches to studying gastrointestinal microbiome in the context of precision medicine and machine learning.

Front Mol Biosci. 2024-1-19

[9]
Gut microbiome-mediated epigenetic regulation of brain disorder and application of machine learning for multi-omics data analysis.

Genome. 2021-4

[10]
Artificial intelligence and metagenomics in intestinal diseases.

J Gastroenterol Hepatol. 2021-4

引用本文的文献

[1]
Mucosal microbiota signatures reveal diagnostic insights in chronic liver disease.

BMC Gastroenterol. 2025-8-21

[2]
A Systematic Review on Effect of Bifidobacterium Isolated from Skin Microbiota on GLP-1 Production to Alleviate Human Ailments.

Probiotics Antimicrob Proteins. 2025-8-6

[3]
Operationalizing Team Science at the Academic Cancer Center Network to Unveil the Structure and Function of the Gut Microbiome.

J Clin Med. 2025-3-17

[4]
Mental Health Disorders Due to Gut Microbiome Alteration and NLRP3 Inflammasome Activation After Spinal Cord Injury: Molecular Mechanisms, Promising Treatments, and Aids from Artificial Intelligence.

Brain Sci. 2025-2-14

[5]
A bibliometric study on the impact of gut microbiota on the efficacy of immune checkpoint inhibitors in cancer patients: analysis of the top 100 cited articles.

Front Immunol. 2025-1-16

[6]
The role of the microbiota-gut-brain axis and artificial intelligence in cognitive health of pediatric obstructive sleep apnea: A narrative review.

Medicine (Baltimore). 2024-12-13

[7]
Delineating the nexus between gut-intratumoral microbiome and osteo-immune system in bone metastases.

Bone Rep. 2024-10-10

[8]
AI in microbiome-related healthcare.

Microb Biotechnol. 2024-11

[9]
Gut Microbiota Are a Novel Source of Biomarkers for Immunotherapy in Non-Small-Cell Lung Cancer (NSCLC).

Cancers (Basel). 2024-5-9

[10]
Interwoven processes in fish development: microbial community succession and immune maturation.

PeerJ. 2024

本文引用的文献

[1]
Celiac Disease and Neurological Manifestations: From Gluten to Neuroinflammation.

Int J Mol Sci. 2022-12-8

[2]
Enrichment of gut microbiome strains for cultivation-free genome sequencing using droplet microfluidics.

Cell Rep Methods. 2022-1-24

[3]
Genetic manipulation of gut microbes enables single-gene interrogation in a complex microbiome.

Cell. 2022-2-3

[4]
Mendelian randomization analyses support causal relationships between blood metabolites and the gut microbiome.

Nat Genet. 2022-1

[5]
Reporting guidelines for human microbiome research: the STORMS checklist.

Nat Med. 2021-11

[6]
GMrepo v2: a curated human gut microbiome database with special focus on disease markers and cross-dataset comparison.

Nucleic Acids Res. 2022-1-7

[7]
Machine learning to guide clinical decision-making in abdominal surgery-a systematic literature review.

Langenbecks Arch Surg. 2022-2

[8]
MiMeNet: Exploring microbiome-metabolome relationships using neural networks.

PLoS Comput Biol. 2021-5

[9]
Integrating taxonomic, functional, and strain-level profiling of diverse microbial communities with bioBakery 3.

Elife. 2021-5-4

[10]
A Microbiota-Directed Food Intervention for Undernourished Children.

N Engl J Med. 2021-4-22

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索