Suppr超能文献

基于机器学习的荧光和比色传感器阵列用于细菌识别的研究综述。

A review on machine learning-powered fluorescent and colorimetric sensor arrays for bacteria identification.

机构信息

Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, MOE Key Laboratory of Molecular Biophysics, Wuhan, 430074, China.

出版信息

Mikrochim Acta. 2023 Oct 25;190(11):451. doi: 10.1007/s00604-023-06021-5.

Abstract

Biosensors have been widely used for bacteria determination with great success. However, the "lock-and-key" methodology used by biosensors to identify bacteria has a significant limitation: it can only detect one species of bacteria. In recent years, optical (fluorescent and colorimetric) sensor arrays are gradually gaining attention from researchers as a new type of biosensor. They can acquire multiple features of a target simultaneously, form a feature pattern, and determine the bacteria species with the help of pattern recognition/machine learning algorithms. Previous reviews in this area have focused on the interaction between the sensor array and bacteria or the materials used to make the sensors. This review, on the other hand, will provide researchers with a better understanding of the field by discussing fluorescent and colorimetric sensor arrays based on the mechanism of optical signal generation. These sensor arrays will be compared based on the identified species. Finally, we will discuss the limitations of these sensor arrays and explore possible solutions.

摘要

生物传感器已被广泛用于细菌检测,并取得了巨大成功。然而,生物传感器用于识别细菌的“锁钥”方法存在一个重大限制:它只能检测到一种细菌。近年来,光学(荧光和比色)传感器阵列作为一种新型生物传感器逐渐受到研究人员的关注。它们可以同时获取目标的多个特征,形成特征模式,并借助模式识别/机器学习算法来确定细菌种类。该领域的先前综述主要集中在传感器阵列与细菌之间的相互作用或用于制造传感器的材料上。另一方面,本综述将通过讨论基于光学信号产生机制的荧光和比色传感器阵列,为研究人员提供对该领域的更好理解。将根据识别出的物种对这些传感器阵列进行比较。最后,我们将讨论这些传感器阵列的局限性,并探索可能的解决方案。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验