Suppr超能文献

对比增强锥形束乳腺CT:预测具有边缘强化的乳腺病变恶性程度的诊断价值分析

Contrast-Enhanced Cone-Beam Breast CT: An Analysis of Diagnostic Value in Predicting Breast Lesion With Rim Enhancement Malignancy.

作者信息

Zhao Xin, Yang Jun, Zuo Yang, Kang Wei, Liao Hai, Zheng Zhong-Tao, Su Dan-Ke

机构信息

Department of Radiology, Guangxi Medical University Cancer Hospital, Nanning, China.

出版信息

Front Oncol. 2022 May 24;12:868975. doi: 10.3389/fonc.2022.868975. eCollection 2022.

Abstract

BACKGROUND

The objective of the current study was to investigate the diagnostic value of contrast-enhanced cone-beam breast computed tomography (CE-CBBCT) for breast lesion with rim enhancement (RE).

METHODS

All 36 patients were examined by non-contrast (NC-CBBCT) and contrast-enhanced CBBCT (CE-CBBCT) after contrast media (CM) injection. Qualitative morphological enhancement parameters and quantitative enhancement parameters were compared between malignant and benign groups. Multivariable logistic regression analysis was performed to identify independent factors that could predict breast lesion with RE malignancy. Receiver operating curve (ROC) was used to evaluate prediction performance.

RESULTS

A total of 36 patients with 40 lesions underwent breast CE-CBBCT were enrolled. There were significant differences in most qualitative morphological enhancement parameters between the two groups. A multivariate logistic regression model showed that △standardized HU (INR-INR) [odds ratio (OR) = 1.148, 95% CI = 1.034-1.276, = 0.01] and △standardized HU (RP - RP) (OR = 0.891, 95% CI = 0.814-0.976, = 0.013) were independent indicators in predicting breast lesion with RE malignancy. △standardized HU (INR - INR) combined with △standardized HU (RP - RP) showed significant larger area under the receiver operating curve (AUC) and higher sensitivity than each alone ( < 0.001, AUC = 0.932, sensitivity = 92.59%, specificity = 92.31%). The regression equation of the prediction model was as follows: Logit () = 0.351 + 0.138X × △standardized HU (INR - INR) - 0.115 × △standardized HU (RP - RP).

CONCLUSION

With the observation of qualitative morphological enhancement parameters and the comparison of quantitative enhancement parameters of CBBCT, a reliable basis for the diagnostic accuracy in predicting breast lesion with RE could be provided. These conclusions should be verified in large, well-designed studies.

摘要

背景

本研究的目的是探讨对比增强锥形束乳腺计算机断层扫描(CE-CBBCT)对边缘强化(RE)乳腺病变的诊断价值。

方法

36例患者在注射造影剂(CM)后接受了非增强(NC-CBBCT)和对比增强CBBCT(CE-CBBCT)检查。比较恶性和良性组之间的定性形态学增强参数和定量增强参数。进行多变量逻辑回归分析,以确定可预测RE恶性乳腺病变的独立因素。采用受试者操作特征曲线(ROC)评估预测性能。

结果

共纳入36例有40个病变的患者接受乳腺CE-CBBCT检查。两组之间大多数定性形态学增强参数存在显著差异。多变量逻辑回归模型显示,△标准化HU(INR-INR)[比值比(OR)=1.148,95%置信区间(CI)=1.034-1.276,P=0.01]和△标准化HU(RP - RP)(OR = 0.891,95% CI = 0.814-0.976,P = 0.013)是预测RE恶性乳腺病变的独立指标。△标准化HU(INR - INR)与△标准化HU(RP - RP)联合显示,受试者操作特征曲线下面积(AUC)显著大于单独使用时,且敏感性更高(P<0.001,AUC = 0.932,敏感性 = 92.59%,特异性 = 92.31%)。预测模型的回归方程如下:Logit(P) = 0.351 + 0.138X×△标准化HU(INR - INR) - 0.115×△标准化HU(RP - RP)。

结论

通过观察CBBCT的定性形态学增强参数并比较定量增强参数,可为预测RE乳腺病变的诊断准确性提供可靠依据。这些结论应在大型、设计良好的研究中得到验证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4645/9172967/90e6b24b59bb/fonc-12-868975-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验