Suppr超能文献

基于 CE-CBBCT 放射组学特征的 ML 模型对 HER2-低 BC 术前预测的性能评估:一项前瞻性研究。

Performance evaluation of ML models for preoperative prediction of HER2-low BC based on CE-CBBCT radiomic features: A prospective study.

机构信息

Department of Medical Imaging Center, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China.

Department of Radiology, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, China.

出版信息

Medicine (Baltimore). 2024 Jun 14;103(24):e38513. doi: 10.1097/MD.0000000000038513.

Abstract

To explore the value of machine learning (ML) models based on contrast-enhanced cone-beam breast computed tomography (CE-CBBCT) radiomics features for the preoperative prediction of human epidermal growth factor receptor 2 (HER2)-low expression breast cancer (BC). Fifty-six patients with HER2-negative invasive BC who underwent preoperative CE-CBBCT were prospectively analyzed. Patients were randomly divided into training and validation cohorts at approximately 7:3. A total of 1046 quantitative radiomic features were extracted from CE-CBBCT images and normalized using z-scores. The Pearson correlation coefficient and recursive feature elimination were used to identify the optimal features. Six ML models were constructed based on the selected features: linear discriminant analysis (LDA), random forest (RF), support vector machine (SVM), logistic regression (LR), AdaBoost (AB), and decision tree (DT). To evaluate the performance of these models, receiver operating characteristic curves and area under the curve (AUC) were used. Seven features were selected as the optimal features for constructing the ML models. In the training cohort, the AUC values for SVM, LDA, RF, LR, AB, and DT were 0.984, 0.981, 1.000, 0.970, 1.000, and 1.000, respectively. In the validation cohort, the AUC values for the SVM, LDA, RF, LR, AB, and DT were 0.859, 0.880, 0.781, 0.880, 0.750, and 0.713, respectively. Among all ML models, the LDA and LR models demonstrated the best performance. The DeLong test showed that there were no significant differences among the receiver operating characteristic curves in all ML models in the training cohort (P > .05); however, in the validation cohort, the DeLong test showed that the differences between the AUCs of LDA and RF, AB, and DT were statistically significant (P = .037, .003, .046). The AUCs of LR and RF, AB, and DT were statistically significant (P = .023, .005, .030). Nevertheless, no statistically significant differences were observed when compared to the other ML models. ML models based on CE-CBBCT radiomics features achieved excellent performance in the preoperative prediction of HER2-low BC and could potentially serve as an effective tool to assist in precise and personalized targeted therapy.

摘要

探讨基于对比增强锥形束乳腺计算机断层扫描(CE-CBBCT)放射组学特征的机器学习(ML)模型在预测人类表皮生长因子受体 2(HER2)低表达乳腺癌(BC)中的术前预测价值。对 56 例术前接受 CE-CBBCT 的 HER2 阴性浸润性 BC 患者进行前瞻性分析。患者按约 7:3 的比例随机分为训练和验证队列。从 CE-CBBCT 图像中提取了 1046 个定量放射组学特征,并使用 z 分数进行归一化。使用 Pearson 相关系数和递归特征消除来识别最佳特征。基于选定的特征构建了 6 个 ML 模型:线性判别分析(LDA)、随机森林(RF)、支持向量机(SVM)、逻辑回归(LR)、AdaBoost(AB)和决策树(DT)。为了评估这些模型的性能,使用了接收器工作特征曲线和曲线下面积(AUC)。选择了 7 个特征作为构建 ML 模型的最佳特征。在训练队列中,SVM、LDA、RF、LR、AB 和 DT 的 AUC 值分别为 0.984、0.981、1.000、0.970、1.000 和 1.000。在验证队列中,SVM、LDA、RF、LR、AB 和 DT 的 AUC 值分别为 0.859、0.880、0.781、0.880、0.750 和 0.713。在所有 ML 模型中,LDA 和 LR 模型表现最佳。DeLong 检验显示,在训练队列中,所有 ML 模型的接收器工作特征曲线之间没有显著差异(P>.05);然而,在验证队列中,DeLong 检验显示,LDA 和 RF、AB 和 DT 的 AUC 之间的差异具有统计学意义(P=0.037、0.003、0.046)。LR 和 RF、AB 和 DT 的 AUC 之间的差异具有统计学意义(P=0.023、0.005、0.030)。然而,与其他 ML 模型相比,这些差异没有统计学意义。基于 CE-CBBCT 放射组学特征的 ML 模型在 HER2 低表达 BC 的术前预测中表现出优异的性能,可能成为辅助精确和个性化靶向治疗的有效工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a2d6/11175967/0bbf12cc0168/medi-103-e38513-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验