Suppr超能文献

基于预测编码的连续序列建模

Continual Sequence Modeling With Predictive Coding.

作者信息

Annabi Louis, Pitti Alexandre, Quoy Mathias

机构信息

UMR8051 Equipes Traitement de l'Information et Systemes (ETIS), CY University, ENSEA, CNRS, Cergy-Pontoise, France.

IPAL CNRS Singapore, Singapore, Singapore.

出版信息

Front Neurorobot. 2022 May 23;16:845955. doi: 10.3389/fnbot.2022.845955. eCollection 2022.

Abstract

Recurrent neural networks (RNNs) have been proved very successful at modeling sequential data such as language or motions. However, these successes rely on the use of the backpropagation through time (BPTT) algorithm, batch training, and the hypothesis that all the training data are available at the same time. In contrast, the field of developmental robotics aims at uncovering lifelong learning mechanisms that could allow embodied machines to learn and stabilize knowledge in continuously evolving environments. In this article, we investigate different RNN designs and learning methods, that we evaluate in a continual learning setting. The generative modeling task consists in learning to generate 20 continuous trajectories that are presented sequentially to the learning algorithms. Each method is evaluated according to the average prediction error over the 20 trajectories obtained after complete training. This study focuses on learning algorithms with low memory requirements, that do not need to store past information to update their parameters. Our experiments identify two approaches especially fit for this task: conceptors and predictive coding. We suggest combining these two mechanisms into a new proposed model that we label PC-Conceptors that outperforms the other methods presented in this study.

摘要

递归神经网络(RNNs)已被证明在对语言或动作等序列数据进行建模方面非常成功。然而,这些成功依赖于通过时间反向传播(BPTT)算法、批量训练以及所有训练数据可同时获取的假设。相比之下,发展机器人学领域旨在揭示终身学习机制,使具身机器能够在不断变化的环境中学习并稳定知识。在本文中,我们研究了不同的RNN设计和学习方法,并在持续学习环境中对其进行评估。生成建模任务包括学习生成20条连续轨迹,这些轨迹会按顺序呈现给学习算法。每种方法根据完全训练后获得的20条轨迹上的平均预测误差进行评估。本研究聚焦于低内存需求的学习算法,这些算法无需存储过去的信息来更新其参数。我们的实验确定了两种特别适合此任务的方法:概念器和预测编码。我们建议将这两种机制结合到一个新提出的模型中,我们将其标记为PC - 概念器,该模型优于本研究中提出的其他方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/921c/9171436/c5a725804912/fnbot-16-845955-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验