Kaur Puneet, Kaur Simranpreet, Arora Deepawali, Asokan K, Singh D P
Department of Physics, Guru Nanak Dev University Amritsar-143005 India
Materials Science Division, Inter University Accelerator Centre Aruna Asaf Ali Marg New Delhi-110067 India.
RSC Adv. 2019 Jul 2;9(36):20536-20548. doi: 10.1039/c9ra01901d. eCollection 2019 Jul 1.
The present study reports the impact of thermal annealing on the structural, optical and magnetic properties of WO nanostructures, synthesized using an acid precipitation method by, employing various spectroscopic and magnetic measurements. The X-ray diffraction and Raman measurements confirmed the orthorhombic structure of as dried WO·HO and monoclinic structure of WO nanopowders annealed at or above 500 °C. The morphological characterization shows the formation of different microstructures like nanosheets, nanoplatelets and nanocuboids in the micro-scale with the variation of annealing temperatures. The optical band gap has been calculated using the Kubelka-Munk function. The room temperature photoluminescence (PL) spectra recorded at different excitation wavelengths show intense near ultraviolet (NUV) emission which might be due to the presence of localized states associated with oxygen vacancies, and the surface states in the conduction band. The emissions in visible region correspond to the structural defects such as oxygen vacancies present within the band gap and band to band transitions. The spectral chromaticity colour coordinates indicate that the light emitted from the prepared samples shows shift from violet to red region with the change of excitation wavelength. Magnetic measurements show decrease in room temperature ferromagnetism (FM) with annealing temperature. The X-ray absorption spectroscopy (XAS) measurements at O K-edge show the significant change in the W-O hybridizations. The decrease in PL intensity and ferromagnetic ordering with increase in annealing temperatures are directly correlated with the filling up of oxygen vacancies in the samples. The oxygen vacancies based F-Center exchange model is discussed to understand the origin of FM in WO nanostructures.
本研究报告了热退火对采用酸沉淀法合成的WO纳米结构的结构、光学和磁性性能的影响,采用了各种光谱和磁性测量方法。X射线衍射和拉曼测量证实了干燥后的WO·HO的正交结构以及在500℃或更高温度下退火的WO纳米粉末的单斜结构。形态表征表明,随着退火温度的变化,在微观尺度上形成了不同的微观结构,如纳米片、纳米片层和纳米立方体。使用Kubelka-Munk函数计算了光学带隙。在不同激发波长下记录的室温光致发光(PL)光谱显示出强烈的近紫外(NUV)发射,这可能是由于与氧空位相关的局域态以及导带中的表面态的存在。可见光区域的发射对应于带隙内存在的氧空位等结构缺陷以及带间跃迁。光谱色度坐标表明,制备样品发射的光随着激发波长的变化从紫色区域向红色区域移动。磁性测量表明,室温铁磁性(FM)随退火温度降低。在O K边的X射线吸收光谱(XAS)测量显示W-O杂化有显著变化。随着退火温度的升高,PL强度和铁磁有序性的降低与样品中氧空位的填充直接相关。讨论了基于氧空位的F中心交换模型,以理解WO纳米结构中FM的起源。