Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India;
Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
J Popul Ther Clin Pharmacol. 2022 Mar 18;29(1):e97-e108. doi: 10.47750/jptcp.2022.898. eCollection 2022.
This research work aims at developing an automatic medical image analysis and detection for accurate classification of brain tumors from a magnetic resonance imaging (MRI) dataset. We developed a new MIDNet18 CNN architecture in comparison with the AlexNet CNN architecture for classifying normal brain images from brain tumor images.
The novel MIDNet18 CNN architecture comprises 14 convolutional layers, seven pooling layers, four dense layers, and one classification layer. The dataset used for this study has two classes: normal brain MR images and brain tumor MR images. This binary MRI brain dataset consists of 2918 images as the training set, 1458 images as the validation set, and 212 images as the test set. The independent sample size calculated was seven for each group, keeping GPower at 80%.
From the experimental performance metrics, it could be inferred that our novel MIDNet18 achieved higher test accuracy, AUC, F1 score, precision, and recall over the AlexNet algorithm.
From the result, it can be concluded that MIDNet18 is significantly more accurate (independent sample t-test <0.05) than AlexNet in classifying tumors from brain MRI images.
本研究旨在开发一种自动医学图像分析和检测方法,以从磁共振成像 (MRI) 数据集准确分类脑肿瘤。我们开发了一种新的 MIDNet18 CNN 架构,与 AlexNet CNN 架构相比,用于对正常脑图像和脑肿瘤图像进行分类。
新的 MIDNet18 CNN 架构包括 14 个卷积层、7 个池化层、4 个密集层和 1 个分类层。本研究使用的数据集有两个类别:正常脑 MRI 图像和脑肿瘤 MRI 图像。这个二进制 MRI 脑数据集由 2918 张图像作为训练集、1458 张图像作为验证集和 212 张图像作为测试集。每个组的独立样本大小计算为七个,保持 GPower 为 80%。
从实验性能指标可以推断,我们的新型 MIDNet18 在测试准确性、AUC、F1 分数、精度和召回率方面均优于 AlexNet 算法。
从结果可以得出结论,MIDNet18 在对脑 MRI 图像中的肿瘤进行分类方面明显比 AlexNet 更准确(独立样本 t 检验 <0.05)。