Suppr超能文献

优化神经网络算法,以实现 MRI 影像中脑肿瘤的精确分类。

Refining neural network algorithms for accurate brain tumor classification in MRI imagery.

机构信息

Department of Information Systems, College of Computer Sciences and Information Technology, King Faisal University, Hofuf, Saudi Arabia.

Department of Computer Science and Engineering, Faculty of Engineering and Technology, JAIN (Deemed-to-be University), Bangalore, 562112, India.

出版信息

BMC Med Imaging. 2024 May 21;24(1):118. doi: 10.1186/s12880-024-01285-6.

Abstract

Brain tumor diagnosis using MRI scans poses significant challenges due to the complex nature of tumor appearances and variations. Traditional methods often require extensive manual intervention and are prone to human error, leading to misdiagnosis and delayed treatment. Current approaches primarily include manual examination by radiologists and conventional machine learning techniques. These methods rely heavily on feature extraction and classification algorithms, which may not capture the intricate patterns present in brain MRI images. Conventional techniques often suffer from limited accuracy and generalizability, mainly due to the high variability in tumor appearance and the subjective nature of manual interpretation. Additionally, traditional machine learning models may struggle with the high-dimensional data inherent in MRI images. To address these limitations, our research introduces a deep learning-based model utilizing convolutional neural networks (CNNs).Our model employs a sequential CNN architecture with multiple convolutional, max-pooling, and dropout layers, followed by dense layers for classification. The proposed model demonstrates a significant improvement in diagnostic accuracy, achieving an overall accuracy of 98% on the test dataset. The proposed model demonstrates a significant improvement in diagnostic accuracy, achieving an overall accuracy of 98% on the test dataset. The precision, recall, and F1-scores ranging from 97 to 98% with a roc-auc ranging from 99 to 100% for each tumor category further substantiate the model's effectiveness. Additionally, the utilization of Grad-CAM visualizations provides insights into the model's decision-making process, enhancing interpretability. This research addresses the pressing need for enhanced diagnostic accuracy in identifying brain tumors through MRI imaging, tackling challenges such as variability in tumor appearance and the need for rapid, reliable diagnostic tools.

摘要

使用 MRI 扫描进行脑肿瘤诊断存在重大挑战,因为肿瘤的表现和变化非常复杂。传统方法通常需要大量的人工干预,并且容易出现人为错误,导致误诊和治疗延误。目前的方法主要包括放射科医生的手动检查和传统的机器学习技术。这些方法严重依赖于特征提取和分类算法,而这些算法可能无法捕捉到脑 MRI 图像中复杂的模式。传统技术通常由于肿瘤表现的高度可变性和手动解释的主观性,准确性和通用性有限。此外,传统的机器学习模型可能难以处理 MRI 图像中固有的高维数据。为了解决这些限制,我们的研究引入了一种基于深度学习的模型,该模型使用卷积神经网络(CNN)。

我们的模型采用具有多个卷积、最大池化和 dropout 层的顺序 CNN 架构,然后是用于分类的密集层。所提出的模型在诊断准确性方面取得了显著提高,在测试数据集上的总体准确性达到了 98%。所提出的模型在诊断准确性方面取得了显著提高,在测试数据集上的总体准确性达到了 98%。对于每个肿瘤类别,精度、召回率和 F1 分数在 97%至 98%之间,ROC-AUC 在 99%至 100%之间,进一步证实了该模型的有效性。此外,利用 Grad-CAM 可视化提供了对模型决策过程的深入了解,提高了可解释性。这项研究通过 MRI 成像解决了提高识别脑肿瘤诊断准确性的迫切需求,解决了肿瘤表现的可变性和对快速、可靠诊断工具的需求等挑战。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d34b/11110259/4e0474e790f3/12880_2024_1285_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验