Suppr超能文献

基于半监督学习的冠状动脉造影序列光流估计。

Optical flow estimation of coronary angiography sequences based on semi-supervised learning.

机构信息

The Future Laboratory, Tsinghua University, No. 1, Tsinghua Yuan, Haidian, Beijing, 100084, China; Department of Information Art and Design, Academy of Arts and Design, Tsinghua University, No. 1, Tsinghua Yuan, Haidian, Beijing, 100084, China.

Capital University of Physical Education and Sports, No. 11 Beisanhuanxilu, Haidian District, Beijing, 100088, China.

出版信息

Comput Biol Med. 2022 Jul;146:105663. doi: 10.1016/j.compbiomed.2022.105663. Epub 2022 May 26.

Abstract

Optical flow is widely used in medical image processing, such as image registration, segmentation, 3D reconstruction, and temporal super-resolution. However, high-precision optical flow training datasets for medical images are challenging to produce. The current optical flow estimation models trained on these non-medical datasets, such as KITTI, Sintel, and FlyingChairs are unsuitable for medical images. In this work, we propose a semi-supervised learning mechanism to estimate the optical flow of coronary angiography. Our proposed method only needs the original medical images, segmentation results of regions of interest, and pre-trained models based on other optical flow datasets to train a new optical flow estimation model suitable for medical images. First, we use the coronary segmentation results to perform image enhancement processing on the coronary vascular region to improve the image contrast between the vascular region and the surrounding tissues. Then, we extract the high-precision optical flow of coronary arteries based on the coronary-enhanced images and the pre-trained optical flow estimation model. After estimating the optical flow, we take it and its corresponding original coronary angiography images as the training dataset to train the optical flow estimation network. Furthermore, we generate a large-scale synthetic Flying-artery dataset based on coronary artery segmentation results and original coronary angiography images, which is used to improve and evaluate the accuracy of optical flow estimation for coronary angiography. The experimental results on the coronary angiography datasets demonstrate that our proposed method can significantly improve the optical flow estimation accuracy of coronary angiography sequences compared with other methods.

摘要

光流在医学图像处理中得到了广泛的应用,例如图像配准、分割、3D 重建和时间超分辨率。然而,制作高精度的医学图像光流训练数据集具有挑战性。目前,基于 KITTI、Sintel 和 FlyingChairs 等非医学数据集训练的光流估计模型并不适用于医学图像。在这项工作中,我们提出了一种半监督学习机制来估计冠状动脉造影的光流。我们的方法仅需要原始医学图像、感兴趣区域的分割结果以及基于其他光流数据集的预训练模型,即可训练出适用于医学图像的新的光流估计模型。首先,我们使用冠状动脉分割结果对冠状动脉区域进行图像增强处理,以提高血管区域与周围组织之间的图像对比度。然后,我们基于冠状动脉增强图像和预训练的光流估计模型提取冠状动脉的高精度光流。估计完光流后,我们将其及其对应的原始冠状动脉造影图像作为训练数据集来训练光流估计网络。此外,我们基于冠状动脉分割结果和原始冠状动脉造影图像生成了一个大规模的合成 Flying-artery 数据集,用于提高和评估冠状动脉造影的光流估计准确性。在冠状动脉造影数据集上的实验结果表明,与其他方法相比,我们的方法可以显著提高冠状动脉造影序列的光流估计精度。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验