Huang Feng, Huang Wei, Wu Xianyu
School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350108, China.
Sensors (Basel). 2024 Mar 1;24(5):1615. doi: 10.3390/s24051615.
Due to the complexity of real optical flow capture, the existing research still has not performed real optical flow capture of infrared (IR) images with the production of an optical flow based on IR images, which makes the research and application of deep learning-based optical flow computation limited to the field of RGB images only. Therefore, in this paper, we propose a method to produce an optical flow dataset of IR images. We utilize the RGB-IR cross-modal image transformation network to rationally transform existing RGB image optical flow datasets. The RGB-IR cross-modal image transformation is based on the improved Pix2Pix implementation, and in the experiments, the network is validated and evaluated using the RGB-IR aligned bimodal dataset MFD. Then, RGB-IR cross-modal transformation is performed on the existing RGB optical flow dataset KITTI, and the optical flow computation network is trained using the IR images generated by the transformation. Finally, the computational results of the optical flow computation network before and after training are analyzed based on the RGB-IR aligned bimodal data.
由于实际光流捕捉的复杂性,现有研究仍未对红外(IR)图像进行基于IR图像生成光流的实际光流捕捉,这使得基于深度学习的光流计算的研究和应用仅局限于RGB图像领域。因此,在本文中,我们提出一种生成IR图像光流数据集的方法。我们利用RGB-IR跨模态图像变换网络对现有的RGB图像光流数据集进行合理变换。RGB-IR跨模态图像变换基于改进的Pix2Pix实现,并且在实验中,使用RGB-IR对齐双峰数据集MFD对该网络进行验证和评估。然后,对现有的RGB光流数据集KITTI进行RGB-IR跨模态变换,并使用变换生成的IR图像训练光流计算网络。最后,基于RGB-IR对齐双峰数据对训练前后光流计算网络的计算结果进行分析。