Suppr超能文献

由WS纳米管中全壁电荷转移驱动的巨大体光伏效应。

Giant bulk photovoltaic effect driven by the wall-to-wall charge shift in WS nanotubes.

作者信息

Kim Bumseop, Park Noejung, Kim Jeongwoo

机构信息

Department of Physics, Ulsan National Institute of Science and Technology, Ulsan, 689-798, Korea.

Department of Physics, Incheon National University, Incheon, 406-772, Korea.

出版信息

Nat Commun. 2022 Jun 10;13(1):3237. doi: 10.1038/s41467-022-31018-8.

Abstract

The intrinsic light-matter characteristics of transition-metal dichalcogenides have not only been of great scientific interest but have also provided novel opportunities for the development of advanced optoelectronic devices. Among the family of transition-metal dichalcogenide structures, the one-dimensional nanotube is particularly attractive because it produces a spontaneous photocurrent that is prohibited in its higher-dimensional counterparts. Here, we show that WS nanotubes exhibit a giant shift current near the infrared region, amounting to four times the previously reported values in the higher frequency range. The wall-to-wall charge shift constitutes a key advantage of the one-dimensional nanotube geometry, and we consider a Janus-type heteroatomic configuration that can maximize this interwall effect. To assess the nonlinear effect of a strong field and the nonadiabatic effect of atomic motion, we carried out direct real-time integration of the photoinduced current using time-dependent density functional theory. Our findings provide a solid basis for a complete quantum mechanical understanding of the unique light-matter interaction hidden in the geometric characteristics of the reduced dimension.

摘要

过渡金属二硫属化物的本征光与物质特性不仅具有重大的科学研究价值,还为先进光电器件的发展提供了新机遇。在过渡金属二硫属化物结构家族中,一维纳米管尤其引人注目,因为它能产生自发光电流,而其高维同类结构中则不存在这种现象。在此,我们表明WS纳米管在红外区域附近展现出巨大的位移电流,达到此前在高频范围所报道值的四倍。壁间电荷转移是一维纳米管几何结构的关键优势,我们考虑一种能使这种壁间效应最大化的Janus型杂原子构型。为评估强场的非线性效应和原子运动的非绝热效应,我们利用含时密度泛函理论对光致电流进行了直接实时积分。我们的研究结果为从量子力学角度全面理解隐藏在低维几何特征中的独特光与物质相互作用奠定了坚实基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d52/9187746/ae56bbb0919a/41467_2022_31018_Fig1_HTML.jpg

相似文献

1
Giant bulk photovoltaic effect driven by the wall-to-wall charge shift in WS nanotubes.
Nat Commun. 2022 Jun 10;13(1):3237. doi: 10.1038/s41467-022-31018-8.
2
Semiconducting Transition Metal Dichalcogenide Heteronanotubes with Controlled Outer-Wall Structures.
Nano Lett. 2023 Nov 22;23(22):10103-10109. doi: 10.1021/acs.nanolett.3c01761. Epub 2023 Oct 16.
3
Direct Observation of Perovskite Photodetector Performance Enhancement by Atomically Thin Interface Engineering.
ACS Appl Mater Interfaces. 2018 Oct 24;10(42):36493-36504. doi: 10.1021/acsami.8b10971. Epub 2018 Oct 11.
4
Vapor Phase Selective Growth of Two-Dimensional Perovskite/WS Heterostructures for Optoelectronic Applications.
ACS Appl Mater Interfaces. 2019 Oct 30;11(43):40503-40511. doi: 10.1021/acsami.9b13904. Epub 2019 Oct 18.
5
Optoelectronic Properties of a van der Waals WS Monolayer/2D Perovskite Vertical Heterostructure.
ACS Appl Mater Interfaces. 2020 Oct 7;12(40):45235-45242. doi: 10.1021/acsami.0c14398. Epub 2020 Sep 25.
6
Probing the Chiral Domains and Excitonic States in Individual WS Tubes by Second-Harmonic Generation.
Nano Lett. 2021 Jun 23;21(12):4937-4943. doi: 10.1021/acs.nanolett.1c00497. Epub 2021 Jun 11.
7
Tunable Conductance of MoS and WS Quantum Dots by Electron Transfer with Redox-Active Quinone.
ACS Appl Mater Interfaces. 2022 Feb 2;14(4):5750-5761. doi: 10.1021/acsami.1c18092. Epub 2022 Jan 20.
8
Symmetry-Controlled Reversible Photovoltaic Current Flow in Ultrathin All 2D Vertically Stacked Graphene/MoS/WS/Graphene Devices.
ACS Appl Mater Interfaces. 2019 Jan 16;11(2):2234-2242. doi: 10.1021/acsami.8b16790. Epub 2019 Jan 3.
9
Ultrafast charge transfer in atomically thin MoS₂/WS₂ heterostructures.
Nat Nanotechnol. 2014 Sep;9(9):682-6. doi: 10.1038/nnano.2014.167. Epub 2014 Aug 24.
10
Directed Energy Transfer from Monolayer WS to Near-Infrared Emitting PbS-CdS Quantum Dots.
ACS Nano. 2020 Nov 24;14(11):15374-15384. doi: 10.1021/acsnano.0c05818. Epub 2020 Oct 20.

引用本文的文献

1
Active Sites-Enriched Hierarchical Weyl Semimetal WTe Nanowire Arrays for Highly Efficient Hydrogen Evolution Reaction.
Adv Sci (Weinh). 2025 Jul;12(25):e2500516. doi: 10.1002/advs.202500516. Epub 2025 Apr 2.
2
Boosting bulk photovoltaic effect in transition metal dichalcogenide by edge semimetal contact.
Light Sci Appl. 2025 Jan 2;14(1):22. doi: 10.1038/s41377-024-01691-z.
4
Heteroatoms (Si, B, N, and P) doped 2D monolayer MoS for NH gas detection.
RSC Adv. 2022 Sep 13;12(40):25992-26010. doi: 10.1039/d2ra04028j. eCollection 2022 Sep 12.

本文引用的文献

1
Pure spin photocurrent in non-centrosymmetric crystals: bulk spin photovoltaic effect.
Nat Commun. 2021 Jul 15;12(1):4330. doi: 10.1038/s41467-021-24541-7.
2
Probing the Chiral Domains and Excitonic States in Individual WS Tubes by Second-Harmonic Generation.
Nano Lett. 2021 Jun 23;21(12):4937-4943. doi: 10.1021/acs.nanolett.1c00497. Epub 2021 Jun 11.
3
Manipulating Weyl quasiparticles by orbital-selective photoexcitation in WTe.
Nat Commun. 2021 Mar 25;12(1):1885. doi: 10.1038/s41467-021-22056-9.
4
Escalated Photocurrent with Excitation Energy in Dual-Gated MoTe.
Nano Lett. 2021 Mar 10;21(5):1976-1981. doi: 10.1021/acs.nanolett.0c04410. Epub 2021 Feb 16.
6
Robust edge photocurrent response on layered type II Weyl semimetal WTe.
Nat Commun. 2019 Dec 16;10(1):5736. doi: 10.1038/s41467-019-13713-1.
7
Enhanced intrinsic photovoltaic effect in tungsten disulfide nanotubes.
Nature. 2019 Jun;570(7761):349-353. doi: 10.1038/s41586-019-1303-3. Epub 2019 Jun 19.
8
Unraveling materials Berry curvature and Chern numbers from real-time evolution of Bloch states.
Proc Natl Acad Sci U S A. 2019 Mar 5;116(10):4135-4140. doi: 10.1073/pnas.1816904116. Epub 2019 Feb 14.
9
Diameter-Dependent Superconductivity in Individual WS Nanotubes.
Nano Lett. 2018 Nov 14;18(11):6789-6794. doi: 10.1021/acs.nanolett.8b02647. Epub 2018 Oct 8.
10
Tuning the indirect-direct band gap transition in the MoSSe armchair nanotube by diameter modulation.
Phys Chem Chem Phys. 2018 Jan 31;20(5):3608-3613. doi: 10.1039/c7cp08034d.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验