Suppr超能文献

通过动态质量再分配研究 D 受体的配体激动和拮抗作用。

Investigating the ligand agonism and antagonism at the D receptor by dynamic mass redistribution.

机构信息

Institute of Pharmacy, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany.

出版信息

Sci Rep. 2022 Jun 10;12(1):9637. doi: 10.1038/s41598-022-14311-w.

Abstract

The signalling of the D receptor (DR), a G protein-coupled receptor (GPCR), is a complex process consisting of various components. For the screening of DR ligands, methods quantifying distinct second messengers such as cAMP or the interaction of the receptor with β-arrestin, are commonly employed. In contrast, a label-free biosensor technology like dynamic mass redistribution (DMR), where it is mostly unknown how the individual signalling pathways contribute to the DMR signal, provides a holistic readout of the complex cellular response. In this study, we report the successful application of the DMR technology to CHO-K1 cells stably expressing the human dopamine D receptor. In real-time kinetic experiments, studies of DR reference compounds yielded results for agonists and antagonists that were consistent with those obtained by conventional methods and also allowed a discrimination between partial and full agonists. Furthermore, investigations on the signalling pathway in CHO-K1 hDR cells identified the Gα protein as the main proximal trigger of the observed DMR response. The present study has shown that the DMR technology is a valuable method for the characterisation of putative new ligands and, due to its label-free nature, suggests its use for deorphanisation studies of GPCRs.

摘要

DR 受体(DR)的信号转导是一个复杂的过程,由多种成分组成。为了筛选 DR 配体,通常采用定量检测不同第二信使(如 cAMP)或受体与β-arrestin 相互作用的方法。相比之下,像动态质量重分布(DMR)这样的无标记生物传感器技术,其单个信号通路如何对 DMR 信号做出贡献尚不清楚,它提供了对复杂细胞反应的整体读数。在这项研究中,我们报告了将 DMR 技术成功应用于稳定表达人多巴胺 D 受体的 CHO-K1 细胞。在实时动力学实验中,对 DR 参考化合物的研究得出了激动剂和拮抗剂的结果,与传统方法获得的结果一致,并且还允许区分部分激动剂和完全激动剂。此外,对 CHO-K1 hDR 细胞中信号通路的研究确定 Gα 蛋白是观察到的 DMR 反应的主要近端触发因素。本研究表明,DMR 技术是一种用于表征潜在新配体的有价值的方法,并且由于其无标记的性质,建议将其用于 GPCR 的去孤儿化研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f7bd/9187652/9bef0981df62/41598_2022_14311_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验