Mönnich Denise, Humphrys Laura J, Höring Carina, Hoare Bradley L, Forster Lisa, Pockes Steffen
Institute of Pharmacy, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany.
Florey Institute of Neuroscience and Mental Health, 30 Royal Parade, Parkville, Victoria 3052, Australia.
ACS Pharmacol Transl Sci. 2024 Feb 6;7(3):834-854. doi: 10.1021/acsptsci.3c00339. eCollection 2024 Mar 8.
G protein-coupled receptors show preference for G protein subtypes but can recruit multiple G proteins with various downstream signaling cascades. This functional selection can guide drug design. Dopamine receptors are both stimulatory (D-like) and inhibitory (D-like) with diffuse expression across the central nervous system. Functional selectivity of G protein subunits may help with dopamine receptor targeting and their downstream effects. Three bioluminescence-based assays were used to characterize G protein coupling and function with the five dopamine receptors. Most proximal to ligand binding was the miniG protein assay with split luciferase technology used to measure recruitment. For endogenous and selective ligands, the G-CASE bioluminescence resonance energy transfer (BRET) assay measured G protein activation and receptor selectivity. Downstream, the BRET-based CAMYEN assay quantified cyclic adenosine monophosphate (cAMP) changes. Several dopamine receptor agonists and antagonists were characterized for their G protein recruitment and cAMP effects. G protein selectivity with dopamine revealed potential G coupling at all five receptors, as well as the ability to activate subtypes with the "opposite" effects to canonical signaling. D-like receptor agonist (+)-SKF-81297 and D-like receptor agonist pramipexole showed selectivity at all receptors toward G or G activation, respectively. The five dopamine receptors show a wide range of potentials for G protein coupling and activation, reflected in their downstream cAMP signaling. Targeting these interactions can be achieved through drug design. This opens the door to pharmacological treatment with more selectivity options for inducing the correct physiological events.
G蛋白偶联受体对G蛋白亚型具有偏好性,但可募集多种G蛋白并引发各种下游信号级联反应。这种功能选择能够指导药物设计。多巴胺受体既有刺激性的(D样),也有抑制性的(D样),在中枢神经系统中广泛表达。G蛋白亚基的功能选择性可能有助于针对多巴胺受体及其下游效应进行靶向治疗。我们使用了三种基于生物发光的检测方法来表征G蛋白与五种多巴胺受体的偶联及功能。最接近配体结合的是采用分裂荧光素酶技术的微型G蛋白检测法,用于测量募集情况。对于内源性和选择性配体,G-CASE生物发光共振能量转移(BRET)检测法可测量G蛋白激活和受体选择性。在下游,基于BRET的CAMYEN检测法可量化环磷酸腺苷(cAMP)的变化。我们对几种多巴胺受体激动剂和拮抗剂的G蛋白募集及cAMP效应进行了表征。多巴胺与G蛋白的选择性揭示了所有五种受体均存在潜在的G蛋白偶联,以及激活具有与经典信号传导“相反”效应的亚型的能力。D样受体激动剂(+)-SKF-81297和D样受体激动剂普拉克索分别在所有受体上对G或G激活表现出选择性。五种多巴胺受体在G蛋白偶联和激活方面展现出广泛的潜力,这在其下游cAMP信号传导中得以体现。通过药物设计可以实现针对这些相互作用的靶向治疗。这为药理学治疗打开了大门,提供了更多选择性选项来诱导正确的生理事件。