School of Biological Science, University of Auckland, Auckland, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand.
School of Biological Science, University of Auckland, Auckland, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand.
J Biol Chem. 2022 Jul;298(7):102112. doi: 10.1016/j.jbc.2022.102112. Epub 2022 Jun 9.
Plasmin is a broad-spectrum protease and therefore needs to be tightly regulated. Active plasmin is formed from plasminogen, which is found in high concentrations in the blood and is converted by the plasminogen activators. In the circulation, high levels of α2-antiplasmin rapidly and efficiently inhibit plasmin activity. Certain myeloid immune cells have been shown to bind plasmin and plasminogen on their cell surface via proteins that bind to the plasmin(ogen) kringle domains. Our earlier work showed that T cells can activate plasmin but that they do not themselves express plasminogen. Here, we demonstrate that T cells express several known plasminogen receptors and that they bind plasminogen on their cell surface. We show T cell-bound plasminogen was converted to plasmin by plasminogen activators upon T cell activation. To examine functional consequences of plasmin generation by activated T cells, we investigated its effect on the chemokine, C-C motif chemokine ligand 21 (CCL21). Video microscopy and Western blotting confirmed that plasmin bound by human T cells cleaves CCL21 and increases the chemotactic response of monocyte-derived dendritic cells toward higher CCL21 concentrations along the concentration gradient by increasing their directional migration and track straightness. These results demonstrate how migrating T cells and potentially other activated immune cells may co-opt a powerful proteolytic system from the plasma toward immune processes in the peripheral tissues, where α2-antiplasmin is more likely to be absent. We propose that plasminogen bound to migrating immune cells may strongly modulate chemokine responses in peripheral tissues.
纤溶酶是一种广谱蛋白酶,因此需要严格调控。有活性的纤溶酶由纤溶酶原形成,后者在血液中浓度较高,并被纤溶酶原激活物转化。在循环中,高水平的α2-抗纤溶酶能迅速有效地抑制纤溶酶活性。某些髓样免疫细胞已被证明能通过结合纤溶酶(原)kringle 结构域的蛋白在细胞表面结合纤溶酶和纤溶酶原。我们之前的工作表明 T 细胞可以激活纤溶酶,但它们本身并不表达纤溶酶原。在这里,我们证明 T 细胞表达几种已知的纤溶酶原受体,并在其细胞表面结合纤溶酶原。我们显示 T 细胞结合的纤溶酶原在 T 细胞激活时被纤溶酶原激活物转化为纤溶酶。为了研究激活的 T 细胞产生纤溶酶的功能后果,我们研究了它对趋化因子 C-C 基序趋化因子配体 21(CCL21)的影响。视频显微镜和 Western blot 证实,与人 T 细胞结合的纤溶酶可切割 CCL21,并通过增加单核细胞衍生树突状细胞的定向迁移和轨迹直线度,增加其对更高 CCL21 浓度沿浓度梯度的趋化反应,从而增加其趋化反应。这些结果表明,迁移的 T 细胞和潜在的其他激活免疫细胞如何从血浆中共同利用一种强大的蛋白水解系统来促进外周组织中的免疫过程,而α2-抗纤溶酶更可能不存在。我们提出,与迁移免疫细胞结合的纤溶酶原可能强烈调节外周组织中的趋化因子反应。