Thorsen S, Müllertz S, Suenson E, Kok P
Biochem J. 1984 Oct 1;223(1):179-87. doi: 10.1042/bj2230179.
The pathway of plasminogen transformation was studied in plasma, particularly in relation to fibrin formation and the subsequent stimulation of plasminogen activation. Plasminogen was activated by urokinase (low fibrin-affinity) or tissue-type plasminogen activator (high fibrin-affinity). Formation of 125I-labelled free and inhibitor-bound plasminogen derivatives was quantified after their separation by acetic acid/urea/polyacrylamide-gel electrophoresis. In plasma activator converted Glu-plasminogen (residues 1-790) into Glu-plasmin, which was complexed to alpha 2-plasmin inhibitor. When this inhibitor was saturated, Glu-plasmin was autocatalytically converted into Lys-plasmin (residues 77-790). No plasmin-catalysed Lys-plasminogen formation was observed. Upon fibrin formation, activation initially followed the same Glu-plasminogen-into-Glu-plasmin conversion pathway, and stimulation of plasminogen activation was only observed with tissue-type plasminogen activator. In agreement with the emergence of novel effector function, on early plasmin cleavage of fibrin [Suenson, Lützen & Thorsen (1984) Eur. J. Biochem. 140, 513-522] the fibrin-binding of Glu-plasminogen increased when solid-phase fibrin showed evident signs of degradation. This was associated with the formation of considerable amounts of the more easily activatable Lys-plasminogen, most of which was fibrin-bound. At the same time the rate of plasmin formation with urokinase increased over that in unclotted plasma and the rate of plasmin formation with tissue-type plasminogen activator accelerated. Altogether these processes favoured enhanced fibrin degradation. The rates of Lys-plasminogen and plasmin formation abruptly decreased after lysis of fibrin, probably owing to a compromised effector function on further fibrin degradation.
研究了血浆中纤溶酶原转化的途径,特别是与纤维蛋白形成及随后纤溶酶原激活刺激的关系。纤溶酶原由尿激酶(低纤维蛋白亲和力)或组织型纤溶酶原激活剂(高纤维蛋白亲和力)激活。通过乙酸/尿素/聚丙烯酰胺凝胶电泳分离后,对125I标记的游离和抑制剂结合的纤溶酶原衍生物的形成进行了定量。在血浆中,激活剂将谷氨酸纤溶酶原(1-790位残基)转化为谷氨酸纤溶酶,后者与α2-纤溶酶抑制剂形成复合物。当该抑制剂饱和时,谷氨酸纤溶酶自动催化转化为赖氨酸纤溶酶(77-790位残基)。未观察到纤溶酶催化的赖氨酸纤溶酶原形成。纤维蛋白形成后,激活最初遵循相同的谷氨酸纤溶酶原转化为谷氨酸纤溶酶的途径,并且仅在组织型纤溶酶原激活剂作用下观察到纤溶酶原激活的刺激。与新效应功能的出现一致,在纤维蛋白早期纤溶酶裂解时[苏恩森、吕岑和索尔森(1984年)《欧洲生物化学杂志》140卷,513-522页],当固相纤维蛋白出现明显降解迹象时,谷氨酸纤溶酶原的纤维蛋白结合增加。这与大量更易激活的赖氨酸纤溶酶原的形成有关,其中大部分与纤维蛋白结合。同时,尿激酶形成纤溶酶的速率比未凝结血浆中的速率增加,组织型纤溶酶原激活剂形成纤溶酶的速率加快。总之,这些过程有利于增强纤维蛋白降解。纤维蛋白溶解后,赖氨酸纤溶酶原和纤溶酶形成的速率突然下降,可能是由于进一步纤维蛋白降解时效应功能受损。