Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy.
Department of Anatomy and Neurosciences, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
Neuroimage Clin. 2022;35:103076. doi: 10.1016/j.nicl.2022.103076. Epub 2022 Jun 6.
Multiple sclerosis (MS) is a neurological disorder affecting the central nervous system and features extensive functional brain changes that are poorly understood but relate strongly to clinical impairments. Functional magnetic resonance imaging (fMRI) is a non-invasive, powerful technique able to map activity of brain regions and to assess how such regions interact for an efficient brain network. FMRI has been widely applied to study functional brain changes in MS, allowing to investigate functional plasticity consequent to disease-related structural injury. The first studies in MS using active fMRI tasks mainly aimed to study such plastic changes by identifying abnormal activity in salient brain regions (or systems) involved by the task. In later studies the focus shifted towards resting state (RS) functional connectivity (FC) studies, which aimed to map large-scale functional networks of the brain and to establish how MS pathology impairs functional integration, eventually leading to the hypothesized network collapse as patients clinically progress. This review provides a summary of the main findings from studies using task-based and RS fMRI and illustrates how functional brain alterations relate to clinical disability and cognitive deficits in this condition. We also give an overview of longitudinal studies that used task-based and RS fMRI to monitor disease evolution and effects of motor and cognitive rehabilitation. In addition, we discuss the results of studies using newer technologies involving time-varying FC to investigate abnormal dynamism and flexibility of network configurations in MS. Finally, we show some preliminary results from two recent topics (i.e., multimodal MRI analysis and artificial intelligence) that are receiving increasing attention. Together, these functional studies could provide new (conceptual) insights into disease stage-specific mechanisms underlying progression in MS, with recommendations for future research.
多发性硬化症 (MS) 是一种影响中枢神经系统的神经疾病,其特征是广泛的功能脑变化,这些变化尚未得到充分理解,但与临床损伤密切相关。功能磁共振成像 (fMRI) 是一种非侵入性的强大技术,能够绘制脑区活动图,并评估这些区域如何相互作用以形成有效的大脑网络。fMRI 在研究多发性硬化症中的功能脑变化方面得到了广泛应用,使我们能够研究与疾病相关的结构性损伤引起的功能可塑性。使用主动 fMRI 任务的早期研究主要旨在通过识别参与任务的显著脑区(或系统)中的异常活动来研究这种可塑性变化。在后来的研究中,研究重点转向静息状态 (RS) 功能连接 (FC) 研究,旨在绘制大脑的大规模功能网络,并确定 MS 病理学如何损害功能整合,最终导致假设的网络崩溃,因为患者在临床上进展。本综述提供了使用基于任务和 RS fMRI 的研究的主要发现的总结,并说明了功能脑改变如何与这种情况下的临床残疾和认知缺陷相关。我们还概述了使用基于任务和 RS fMRI 的纵向研究,以监测疾病的演变和运动及认知康复的效果。此外,我们讨论了使用涉及时变 FC 的新技术研究 MS 中网络配置异常动态和灵活性的研究结果。最后,我们展示了两个最近主题(即多模态 MRI 分析和人工智能)的一些初步结果,这些主题越来越受到关注。这些功能研究可以为 MS 进展中特定疾病阶段的机制提供新的(概念)见解,并为未来的研究提供建议。