Suppr超能文献

一种利用超声放射组学特征区分甲状腺良恶性不确定结节的机器学习算法。

A machine-learning algorithm for distinguishing malignant from benign indeterminate thyroid nodules using ultrasound radiomic features.

作者信息

Keutgen Xavier M, Li Hui, Memeh Kelvin, Conn Busch Julian, Williams Jelani, Lan Li, Sarne David, Finnerty Brendan, Angelos Peter, Fahey Thomas J, Giger Maryellen L

机构信息

The University of Chicago Medicine, Endocrine Surgery Research Program, Division of General Surgery and Surgical Oncology, Department of Surgery, Chicago, Illinois, United States.

The University of Chicago, Department of Radiology, Chicago, Illinois, United States.

出版信息

J Med Imaging (Bellingham). 2022 May;9(3):034501. doi: 10.1117/1.JMI.9.3.034501. Epub 2022 May 26.

Abstract

: Ultrasound (US)-guided fine needle aspiration (FNA) cytology is the gold standard for the evaluation of thyroid nodules. However, up to 30% of FNA results are indeterminate, requiring further testing. In this study, we present a machine-learning analysis of indeterminate thyroid nodules on ultrasound with the aim to improve cancer diagnosis. : Ultrasound images were collected from two institutions and labeled according to their FNA (F) and surgical pathology (S) diagnoses [malignant (M), benign (B), and indeterminate (I)]. Subgroup breakdown (FS) included: 90 BB, 83 IB, 70 MM, and 59 IM thyroid nodules. Margins of thyroid nodules were manually annotated, and computerized radiomic texture analysis was conducted within tumor contours. Initial investigation was conducted using five-fold cross-validation paradigm with a two-class Bayesian artificial neural networks classifier, including stepwise feature selection. Testing was conducted on an independent set and compared with a commercial molecular testing platform. Performance was evaluated using receiver operating characteristic analysis in the task of distinguishing between malignant and benign nodules. About 1052 ultrasound images from 302 thyroid nodules were used for radiomic feature extraction and analysis. On the training/validation set comprising 263 nodules, five-fold cross-validation yielded area under curves (AUCs) of 0.75 [Standard Error (SE) = 0.04; ] and 0.67 (SE = 0.05; ) for the classification tasks of MM versus BB, and IM versus IB, respectively. On an independent test set of 19 IM/IB cases, the algorithm for distinguishing indeterminate nodules yielded an AUC value of 0.88 (SE = 0.09; ), which was higher than the AUC of a commercially available molecular testing platform (AUC = 0.81, SE = 0.11; ). Machine learning of computer-extracted texture features on gray-scale ultrasound images showed promising results classifying indeterminate thyroid nodules according to their surgical pathology.

摘要

超声(US)引导下细针穿刺(FNA)细胞学检查是评估甲状腺结节的金标准。然而,高达30%的FNA结果不确定,需要进一步检测。在本研究中,我们对超声检查中不确定的甲状腺结节进行了机器学习分析,旨在改善癌症诊断。从两个机构收集了超声图像,并根据其FNA(F)和手术病理(S)诊断结果进行标记[恶性(M)、良性(B)和不确定(I)]。亚组分类(FS)包括:90个BB、83个IB、70个MM和59个IM甲状腺结节。手动标注甲状腺结节的边界,并在肿瘤轮廓内进行计算机化的放射组学纹理分析。最初的研究采用五折交叉验证范式和二类贝叶斯人工神经网络分类器,包括逐步特征选择。在独立数据集上进行测试,并与商业分子检测平台进行比较。在区分恶性和良性结节的任务中,使用受试者操作特征分析来评估性能。来自302个甲状腺结节的约1052张超声图像用于放射组学特征提取和分析。在包含263个结节的训练/验证集上,五折交叉验证在MM与BB、IM与IB的分类任务中分别产生了曲线下面积(AUC)为0.75[标准误差(SE)=0.04;]和0.67(SE = 0.05;)。在19例IM/IB病例的独立测试集上,区分不确定结节的算法产生的AUC值为0.88(SE = 0.09;),高于商用分子检测平台的AUC(AUC = 0.81,SE = 0.11;)。基于灰度超声图像的计算机提取纹理特征的机器学习在根据手术病理对不确定甲状腺结节进行分类方面显示出了有前景的结果。

相似文献

4
How to approach thyroid nodules with indeterminate cytology.如何处理细胞学不确定的甲状腺结节。
Ann Surg Oncol. 2010 Aug;17(8):2147-55. doi: 10.1245/s10434-010-0992-5. Epub 2010 Mar 9.

引用本文的文献

8
Artificial intelligence in thyroid ultrasound.甲状腺超声中的人工智能
Front Oncol. 2023 May 12;13:1060702. doi: 10.3389/fonc.2023.1060702. eCollection 2023.
10
Hypertension and Obesity: Risk Factors for Thyroid Disease.高血压和肥胖:甲状腺疾病的危险因素。
Front Endocrinol (Lausanne). 2022 Jul 18;13:939367. doi: 10.3389/fendo.2022.939367. eCollection 2022.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验