Suppr超能文献

基于机器学习的多参数 MRI 放射组学预测甲状腺乳头状癌侵袭性。

Machine learning-based multiparametric MRI radiomics for predicting the aggressiveness of papillary thyroid carcinoma.

机构信息

Department of Radiology, Minhang Hospital, Fudan University, Shanghai, China; Department of Diagnostic Radiology, City of Hope National Medical Center, Duarte, CA, United States.

Department of Radiology, Minhang Hospital, Fudan University, Shanghai, China.

出版信息

Eur J Radiol. 2020 Jan;122:108755. doi: 10.1016/j.ejrad.2019.108755. Epub 2019 Nov 20.

Abstract

PURPOSE

To investigate the predictive capability of machine learning-based multiparametric magnetic resonance (MR) imaging radiomics for evaluating the aggressiveness of papillary thyroid carcinoma (PTC) preoperatively.

METHODS

This prospective study enrolled consecutive patients who underwent neck MR scans and subsequent thyroidectomy during the study interval. The diagnosis and aggressiveness of PTC were determined by pathological evaluation of thyroidectomy specimens. Thyroid nodules were segmented manually on the MR images, and radiomic features were then extracted. Predictive machine learning modelling was used to evaluate the prediction of PTC aggressiveness. Area under the receiver operating characteristic curve (AUC) values for the model performance were obtained for radiomic features, clinical characteristics, and combinations of radiomic features and clinical characteristics.

RESULTS

The study cohort included 120 patients with pathology-confirmed PTC (training cohort: n = 96; testing cohort: n = 24). A total of 1393 features were extracted from T2-weighted, apparent diffusion coefficient (ADC) and contrast-enhanced T1-weighted MR images for each patient. The combination of Least Absolute Shrinkage and Selection Operator for radiomic feature selection and Gradient Boosting Classifier for classifying PTC aggressiveness achieving the AUC of 0.92. In contrast, clinical characteristics alone poorly predicted PTC aggressiveness, with an AUC of 0.56.

CONCLUSIONS

Our study showed that machine learning-based multiparametric MR imaging radiomics could accurately distinguish aggressive from non-aggressive PTC preoperatively. This approach may be helpful for informing treatment strategies and prognosis of patients with aggressive PTC.

摘要

目的

研究基于机器学习的多参数磁共振(MR)成像放射组学对术前评估甲状腺乳头状癌(PTC)侵袭性的预测能力。

方法

本前瞻性研究纳入了在研究期间接受颈部 MR 扫描和随后甲状腺切除术的连续患者。PTC 的诊断和侵袭性通过甲状腺切除术标本的病理评估确定。手动在 MR 图像上对甲状腺结节进行分割,然后提取放射组学特征。使用预测性机器学习建模来评估 PTC 侵袭性的预测。获得模型性能的放射组学特征、临床特征以及放射组学特征和临床特征组合的受试者工作特征曲线(ROC)下面积(AUC)值。

结果

该研究队列包括 120 名经病理证实的 PTC 患者(训练队列:n=96;测试队列:n=24)。为每位患者从 T2 加权、表观扩散系数(ADC)和对比增强 T1 加权 MR 图像中提取了 1393 个特征。放射组学特征选择的最小绝对值收缩和选择算子与用于分类 PTC 侵袭性的梯度提升分类器的组合实现了 0.92 的 AUC。相比之下,仅临床特征对 PTC 侵袭性的预测能力较差,AUC 为 0.56。

结论

我们的研究表明,基于机器学习的多参数 MR 成像放射组学可以术前准确区分侵袭性和非侵袭性 PTC。这种方法可能有助于为侵袭性 PTC 患者提供治疗策略和预后信息。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验