From the Department of Radiology (M.-r.K., J.H.S., S.Y.H., K.W.P.), Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.
Department of Radiology (M.-r.K.), Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.
AJNR Am J Neuroradiol. 2020 Apr;41(4):700-705. doi: 10.3174/ajnr.A6505.
It is not known how radiomics using ultrasound images contribute to the detection of BRAF mutation. This study aimed to evaluate whether a radiomics study of gray-scale ultrasound can predict the presence or absence of () mutation in papillary thyroid cancer.
The study retrospectively included 96 thyroid nodules that were surgically confirmed papillary thyroid cancers between January 2012 and June 2013. mutation was positive in 48 nodules and negative in 48 nodules. For analysis, ROIs from the nodules were demarcated manually on both longitudinal and transverse sonographic images. We extracted a total of 86 radiomics features derived from histogram parameters, gray-level co-occurrence matrix, intensity size zone matrix, and shape features. These features were used to build 3 different classifier models, including logistic regression, support vector machine, and random forest using 5-fold cross-validation. The performance including accuracy, sensitivity, specificity, positive predictive value, negative predictive value, and area under the receiver operating characteristic curve, of the different models was evaluated.
The incidence of high-suspicion nodules diagnosed on ultrasound was higher in the mutation-positive group than in the mutation-negative group ( = .004). The radiomics approach demonstrated that all classification models showed moderate performance for predicting the presence of mutation in papillary thyroid cancers with an area under the curve value of 0.651, accuracy of 64.3%, sensitivity of 66.8%, and specificity of 61.8%, on average, for the 3 models.
Radiomics study using thyroid sonography is limited in predicting the mutation status of papillary thyroid carcinoma. Further studies will be needed to validate our results using various diagnostic methods.
目前尚不清楚使用超声图像的放射组学如何有助于检测 BRAF 突变。本研究旨在评估灰度超声的放射组学研究是否可以预测甲状腺乳头状癌中是否存在 () 突变。
本研究回顾性纳入 2012 年 1 月至 2013 年 6 月期间经手术证实为甲状腺乳头状癌的 96 个甲状腺结节。48 个结节中 突变阳性,48 个结节中 突变阴性。在分析中,手动在结节的纵向和横向超声图像上勾勒出 ROI。我们总共提取了 86 个来自直方图参数、灰度共生矩阵、强度大小区矩阵和形状特征的放射组学特征。使用 5 折交叉验证构建了 3 种不同的分类器模型,包括逻辑回归、支持向量机和随机森林。评估了不同模型的性能,包括准确性、敏感性、特异性、阳性预测值、阴性预测值和受试者工作特征曲线下面积。
在超声上诊断为高度可疑结节的发生率在 突变阳性组中高于 突变阴性组( = .004)。放射组学方法表明,所有分类模型对于预测甲状腺乳头状癌中 突变的存在均表现出中等性能,曲线下面积值为 0.651,平均准确率为 64.3%,敏感性为 66.8%,特异性为 61.8%,对于 3 种模型。
使用甲状腺超声的放射组学研究在预测甲状腺乳头状癌的 突变状态方面受到限制。需要进一步研究使用各种诊断方法验证我们的结果。