Suppr超能文献

甲状腺超声影像组学预测甲状腺乳头状癌基因突变的初步研究。

Radiomics Study of Thyroid Ultrasound for Predicting Mutation in Papillary Thyroid Carcinoma: Preliminary Results.

机构信息

From the Department of Radiology (M.-r.K., J.H.S., S.Y.H., K.W.P.), Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.

Department of Radiology (M.-r.K.), Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.

出版信息

AJNR Am J Neuroradiol. 2020 Apr;41(4):700-705. doi: 10.3174/ajnr.A6505.

Abstract

BACKGROUND AND PURPOSE

It is not known how radiomics using ultrasound images contribute to the detection of BRAF mutation. This study aimed to evaluate whether a radiomics study of gray-scale ultrasound can predict the presence or absence of () mutation in papillary thyroid cancer.

MATERIALS AND METHODS

The study retrospectively included 96 thyroid nodules that were surgically confirmed papillary thyroid cancers between January 2012 and June 2013. mutation was positive in 48 nodules and negative in 48 nodules. For analysis, ROIs from the nodules were demarcated manually on both longitudinal and transverse sonographic images. We extracted a total of 86 radiomics features derived from histogram parameters, gray-level co-occurrence matrix, intensity size zone matrix, and shape features. These features were used to build 3 different classifier models, including logistic regression, support vector machine, and random forest using 5-fold cross-validation. The performance including accuracy, sensitivity, specificity, positive predictive value, negative predictive value, and area under the receiver operating characteristic curve, of the different models was evaluated.

RESULTS

The incidence of high-suspicion nodules diagnosed on ultrasound was higher in the mutation-positive group than in the mutation-negative group ( =  .004). The radiomics approach demonstrated that all classification models showed moderate performance for predicting the presence of mutation in papillary thyroid cancers with an area under the curve value of 0.651, accuracy of 64.3%, sensitivity of 66.8%, and specificity of 61.8%, on average, for the 3 models.

CONCLUSIONS

Radiomics study using thyroid sonography is limited in predicting the mutation status of papillary thyroid carcinoma. Further studies will be needed to validate our results using various diagnostic methods.

摘要

背景与目的

目前尚不清楚使用超声图像的放射组学如何有助于检测 BRAF 突变。本研究旨在评估灰度超声的放射组学研究是否可以预测甲状腺乳头状癌中是否存在 () 突变。

材料与方法

本研究回顾性纳入 2012 年 1 月至 2013 年 6 月期间经手术证实为甲状腺乳头状癌的 96 个甲状腺结节。48 个结节中 突变阳性,48 个结节中 突变阴性。在分析中,手动在结节的纵向和横向超声图像上勾勒出 ROI。我们总共提取了 86 个来自直方图参数、灰度共生矩阵、强度大小区矩阵和形状特征的放射组学特征。使用 5 折交叉验证构建了 3 种不同的分类器模型,包括逻辑回归、支持向量机和随机森林。评估了不同模型的性能,包括准确性、敏感性、特异性、阳性预测值、阴性预测值和受试者工作特征曲线下面积。

结果

在超声上诊断为高度可疑结节的发生率在 突变阳性组中高于 突变阴性组( =  .004)。放射组学方法表明,所有分类模型对于预测甲状腺乳头状癌中 突变的存在均表现出中等性能,曲线下面积值为 0.651,平均准确率为 64.3%,敏感性为 66.8%,特异性为 61.8%,对于 3 种模型。

结论

使用甲状腺超声的放射组学研究在预测甲状腺乳头状癌的 突变状态方面受到限制。需要进一步研究使用各种诊断方法验证我们的结果。

相似文献

5
RAS mutations in indeterminate thyroid nodules are predictive of the follicular variant of papillary thyroid carcinoma.
Clin Endocrinol (Oxf). 2015 May;82(5):760-6. doi: 10.1111/cen.12579. Epub 2014 Nov 28.
6
Radiomic Model for Determining the Value of Elasticity and Grayscale Ultrasound Diagnoses for Predicting BRAF Mutations in Papillary Thyroid Carcinoma.
Front Endocrinol (Lausanne). 2022 Apr 22;13:872153. doi: 10.3389/fendo.2022.872153. eCollection 2022.
8
The BRAF(V600E) mutation is associated with malignant ultrasonographic features in thyroid nodules.
Clin Endocrinol (Oxf). 2011 Dec;75(6):844-50. doi: 10.1111/j.1365-2265.2011.04154.x.

引用本文的文献

3
Application progress of artificial intelligence in managing thyroid disease.
Front Endocrinol (Lausanne). 2025 Jun 17;16:1578455. doi: 10.3389/fendo.2025.1578455. eCollection 2025.
4
Deep learning model based on ultrasound images predicts BRAF V600E mutation in papillary thyroid carcinoma.
iScience. 2025 Apr 18;28(5):112482. doi: 10.1016/j.isci.2025.112482. eCollection 2025 May 16.
5
Prediction of BRAF and TERT status in PTCs by machine learning-based ultrasound radiomics methods: A multicenter study.
J Clin Transl Endocrinol. 2025 Mar 30;40:100390. doi: 10.1016/j.jcte.2025.100390. eCollection 2025 Jun.
6
Breaking barriers: noninvasive AI model for BRAF mutation identification.
Int J Comput Assist Radiol Surg. 2025 May;20(5):935-947. doi: 10.1007/s11548-024-03290-0. Epub 2025 Feb 15.
7
Ultrasound-based radiogenomics: status, applications, and future direction.
Ultrasonography. 2025 Mar;44(2):95-111. doi: 10.14366/usg.24152. Epub 2024 Dec 12.
9
Application of machine learning for mass spectrometry-based multi-omics in thyroid diseases.
Front Mol Biosci. 2024 Dec 17;11:1483326. doi: 10.3389/fmolb.2024.1483326. eCollection 2024.
10
Multimodal MRI Deep Learning for Predicting Central Lymph Node Metastasis in Papillary Thyroid Cancer.
Cancers (Basel). 2024 Dec 2;16(23):4042. doi: 10.3390/cancers16234042.

本文引用的文献

1
Noninvasive molecular diagnosis of craniopharyngioma with MRI-based radiomics approach.
BMC Neurol. 2019 Jan 7;19(1):6. doi: 10.1186/s12883-018-1216-z.
3
Can CT-based radiomics signature predict KRAS/NRAS/BRAF mutations in colorectal cancer?
Eur Radiol. 2018 May;28(5):2058-2067. doi: 10.1007/s00330-017-5146-8. Epub 2018 Jan 15.
4
Histogram analysis of greyscale sonograms to differentiate between the subtypes of follicular variant of papillary thyroid cancer.
Clin Radiol. 2018 Jun;73(6):591.e1-591.e7. doi: 10.1016/j.crad.2017.12.008. Epub 2018 Jan 6.
5
Ultrasound and clinicopathological features of papillary thyroid carcinomas with BRAF and TERT promoter mutations.
Oncotarget. 2017 Nov 14;8(65):108946-108957. doi: 10.18632/oncotarget.22430. eCollection 2017 Dec 12.
6
Computational Radiomics System to Decode the Radiographic Phenotype.
Cancer Res. 2017 Nov 1;77(21):e104-e107. doi: 10.1158/0008-5472.CAN-17-0339.
7
Association between the BRAF V600E mutation and ultrasound features of the thyroid in thyroid papillary carcinoma.
Oncol Lett. 2017 Aug;14(2):1439-1444. doi: 10.3892/ol.2017.6276. Epub 2017 May 29.
8
ACR Thyroid Imaging, Reporting and Data System (TI-RADS): White Paper of the ACR TI-RADS Committee.
J Am Coll Radiol. 2017 May;14(5):587-595. doi: 10.1016/j.jacr.2017.01.046. Epub 2017 Apr 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验