Suppr超能文献

基于 CT 影像组学分析预测甲状腺乳头状癌侵犯甲状腺被膜:多分类器及两中心研究。

Radiomics Analysis of Computed Tomography for Prediction of Thyroid Capsule Invasion in Papillary Thyroid Carcinoma: A Multi-Classifier and Two-Center Study.

机构信息

Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China.

Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, China.

出版信息

Front Endocrinol (Lausanne). 2022 May 25;13:849065. doi: 10.3389/fendo.2022.849065. eCollection 2022.

Abstract

OBJECTIVE

To investigate the application of computed tomography (CT)-based radiomics model for prediction of thyroid capsule invasion (TCI) in papillary thyroid carcinoma (PTC).

METHODS

This retrospective study recruited 412 consecutive PTC patients from two independent institutions and randomly assigned to training (n=265), internal test (n=114) and external test (n=33) cohorts. Radiomics features were extracted from non-contrast (NC) and artery phase (AP) CT scans. We also calculated delta radiomics features, which are defined as the absolute differences between the extracted radiomics features. One-way analysis of variance and least absolute shrinkage and selection operator were used to select optimal radiomics features. Then, six supervised machine learning radiomics models (k-nearest neighbor, logistic regression, decision tree, linear support vector machine [L-SVM], Gaussian-SVM, and polynomial-SVM) were constructed. Univariate was used to select clinicoradiological risk factors. Combined models including optimal radiomics features and clinicoradiological risk factors were constructed by these six classifiers. The prediction performance was evaluated using the receiver operating characteristic (ROC) curve, calibration curve, and decision curve analysis (DCA).

RESULTS

In the internal test cohort, the best combined model (L-SVM, AUC=0.820 [95% CI 0.758-0.888]) performed better than the best radiomics model (L-SVM, AUC = 0.733 [95% CI 0.654-0.812]) and the clinical model (AUC = 0.709 [95% CI 0.649-0.783]). Combined-L-SVM model combines 23 radiomics features and 1 clinicoradiological risk factor (CT-reported TCI). In the external test cohort, the AUC was 0.776 (0.625-0.904) in the combined-L-SVM model, showing that the model is stable. DCA demonstrated that the combined model was clinically useful.

CONCLUSIONS

Our combined model based on machine learning incorporated with CT radiomics features and the clinicoradiological risk factor shows good predictive ability for TCI in PTC.

摘要

目的

探究基于计算机断层扫描(CT)的放射组学模型在预测甲状腺乳头状癌(PTC)甲状腺被膜侵犯(TCI)中的应用。

方法

本回顾性研究纳入了来自两个独立机构的 412 例连续 PTC 患者,随机分为训练组(n=265)、内部测试组(n=114)和外部测试组(n=33)。从非增强(NC)和动脉期(AP)CT 扫描中提取放射组学特征。我们还计算了放射组学特征的差值(delta radiomics features),定义为提取的放射组学特征的绝对值差异。采用单因素方差分析和最小绝对值收缩和选择算子(least absolute shrinkage and selection operator)来选择最优放射组学特征。然后,构建了 6 种有监督机器学习放射组学模型(k-最近邻、逻辑回归、决策树、线性支持向量机[L-SVM]、高斯支持向量机和多项式支持向量机)。采用单变量分析选择临床和影像学风险因素。这 6 种分类器构建了包含最优放射组学特征和临床影像学风险因素的联合模型。采用受试者工作特征(receiver operating characteristic,ROC)曲线、校准曲线和决策曲线分析(decision curve analysis,DCA)来评估预测性能。

结果

在内部测试组中,最佳联合模型(L-SVM,AUC=0.820[95%CI 0.758-0.888])优于最佳放射组学模型(L-SVM,AUC=0.733[95%CI 0.654-0.812])和临床模型(AUC=0.709[95%CI 0.649-0.783])。联合-L-SVM 模型结合了 23 个放射组学特征和 1 个临床影像学风险因素(CT 报告的 TCI)。在外部测试组中,联合-L-SVM 模型的 AUC 为 0.776(0.625-0.904),表明模型稳定。DCA 表明联合模型具有临床应用价值。

结论

基于机器学习的联合模型结合了 CT 放射组学特征和临床影像学风险因素,对 PTC 的 TCI 具有良好的预测能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a462/9174423/f0ab1ccdb847/fendo-13-849065-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验