Suppr超能文献

一种通过机器学习技术简化的新柏林问卷,用于意大利医护人员群体以突出阻塞性睡眠呼吸暂停的疑似情况。

A New Berlin Questionnaire Simplified by Machine Learning Techniques in a Population of Italian Healthcare Workers to Highlight the Suspicion of Obstructive Sleep Apnea.

作者信息

De Nunzio Giorgio, Conte Luana, Lupo Roberto, Vitale Elsa, Calabrò Antonino, Ercolani Maurizio, Carvello Maicol, Arigliani Michele, Toraldo Domenico Maurizio, De Benedetto Luigi

机构信息

Laboratory of Biomedical Physics and Environment, Department of Mathematics and Physics "E. De Giorgi", University of Salento, Lecce, Italy.

Laboratory of Interdisciplinary Research Applied to Medicine, University of Salento, Local Health Authority, Lecce, Italy.

出版信息

Front Med (Lausanne). 2022 May 25;9:866822. doi: 10.3389/fmed.2022.866822. eCollection 2022.

Abstract

Obstructive sleep apnea (OSA) syndrome is a condition characterized by the presence of repeated complete or partial collapse of the upper airways during sleep associated with episodes of intermittent hypoxia, leading to fragmentation of sleep, sympathetic nervous system activation, and oxidative stress. To date, one of the major aims of research is to find out a simplified non-invasive screening system for this still underdiagnosed disease. The Berlin questionnaire (BQ) is the most widely used questionnaire for OSA and is a beneficial screening tool devised to select subjects with a high likelihood of having OSA. We administered the original ten-question Berlin questionnaire, enriched with a set of questions purposely prepared by our team and completing the socio-demographic, clinical, and anamnestic picture, to a sample of Italian professional nurses in order to investigate the possible impact of OSA disease on healthcare systems. According to the Berlin questionnaire, respondents were categorized as high-risk and low-risk of having OSA. For both risk groups, baseline characteristics, work information, clinical factors, and symptoms were assessed. Anthropometric data, work information, health status, and symptoms were significantly different between OSA high-risk and low-risk groups. Through supervised feature selection and Machine Learning, we also reduced the original BQ to a very limited set of items which seem capable of reproducing the outcome of the full BQ: this reduced group of questions may be useful to determine the risk of sleep apnea in screening cases where questionnaire compilation time must be kept as short as possible.

摘要

阻塞性睡眠呼吸暂停(OSA)综合征是一种在睡眠期间上呼吸道反复出现完全或部分塌陷,并伴有间歇性缺氧发作的病症,会导致睡眠碎片化、交感神经系统激活和氧化应激。迄今为止,研究的主要目标之一是为这种仍未得到充分诊断的疾病找到一种简化的非侵入性筛查系统。柏林问卷(BQ)是用于OSA的最广泛使用的问卷,是一种旨在筛选出极有可能患有OSA的受试者的有益筛查工具。我们向一组意大利职业护士发放了最初的十项柏林问卷,并补充了我们团队特意准备的一组问题,以完善社会人口统计学、临床和既往史信息,从而调查OSA疾病对医疗系统可能产生的影响。根据柏林问卷,受访者被分为OSA高风险和低风险两类。针对这两个风险组,评估了基线特征、工作信息、临床因素和症状。OSA高风险组和低风险组在人体测量数据、工作信息、健康状况和症状方面存在显著差异。通过监督特征选择和机器学习,我们还将原始的BQ精简为一组非常有限的项目,这些项目似乎能够重现完整BQ的结果:在必须尽可能缩短问卷编制时间的筛查案例中,这组精简后的问题可能有助于确定睡眠呼吸暂停的风险。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f38/9174983/b460a546ae87/fmed-09-866822-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验