Suppr超能文献

加尔各答派士餐厅问题中的随机学习:经典与量子策略

Stochastic Learning in Kolkata Paise Restaurant Problem: Classical and Quantum Strategies.

作者信息

Chakrabarti Bikas K, Rajak Atanu, Sinha Antika

机构信息

Condensed Matter Physics Division, Saha Institute of Nuclear Physics, Kolkata, India.

S. N. Bose National Centre for Basic Sciences, Kolkata, India.

出版信息

Front Artif Intell. 2022 May 26;5:874061. doi: 10.3389/frai.2022.874061. eCollection 2022.

Abstract

We review the results for stochastic learning strategies, both classical (one-shot and iterative) and quantum (one-shot only), for optimizing the available many-choice resources among a large number of competing agents, developed over the last decade in the context of the Kolkata Paise Restaurant (KPR) Problem. Apart from few rigorous and approximate analytical results, both for classical and quantum strategies, most of the interesting results on the phase transition behavior (obtained so far for the classical model) uses classical Monte Carlo simulations. All these including the applications to computer science [job or resource allotments in Internet-of-Things (IoT)], transport engineering (online vehicle hire problems), operation research (optimizing efforts for delegated search problem, efficient solution of Traveling Salesman problem) will be discussed.

摘要

我们回顾了过去十年在加尔各答派萨餐厅(KPR)问题背景下开发的随机学习策略的结果,包括经典策略(一次性和迭代式)和量子策略(仅一次性),用于在大量竞争主体之间优化可用的多项选择资源。除了经典和量子策略的一些严格和近似解析结果外,关于相变行为的大多数有趣结果(到目前为止在经典模型中获得)都使用经典蒙特卡罗模拟。所有这些,包括在计算机科学[物联网(IoT)中的工作或资源分配]、交通工程(在线车辆租赁问题)、运筹学(优化委托搜索问题的努力、旅行商问题的有效解决方案)中的应用都将被讨论。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c9a/9181993/0a1eaa90349c/frai-05-874061-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验