Department of Computer Science, Asutosh College, Kolkata 700026, India.
Saha Institute of Nuclear Physics, Kolkata 700064, India.
Chaos. 2020 Aug;30(8):083116. doi: 10.1063/5.0004816.
A novel phase transition behavior is observed in the Kolkata Paise Restaurant problem where a large number (N) of agents or customers collectively (and iteratively) learn to choose among the N restaurants where she would expect to be alone that evening and would get the only dish available there (or may get randomly picked up if more than one agent arrive there that evening). The players are expected to evolve their strategy such that the publicly available information about past crowds in different restaurants can be utilized and each of them is able to make the best minority choice. For equally ranked restaurants, we follow two crowd-avoiding strategies: strategy I, where each of the n(t) number of agents arriving at the ith restaurant on the tth evening goes back to the same restaurant the next evening with probability [n(t)], and strategy II, with probability p, when n(t)>1. We study the steady state (t-independent) utilization fraction f:(1-f) giving the steady state (wastage) fraction of restaurants going without any customer at any particular evening. With both strategies, we find, near α=0 (in strategy I) or p=1 (in strategy II), the steady state wastage fraction (1-f)∝(α-α) or (p-p) with β≃0.8,0.87,1.0, and the convergence time τ [for f(t) becoming independent of t] varies as τ∝(α-α) or (p-p), with γ≃1.18,1.11,1.05 in infinite-dimensions (rest of the N-1 neighboring restaurants), three dimensions (six neighbors), and two dimensions (four neighbors), respectively.
在加尔各答佩斯餐厅问题中观察到一种新的相变行为,其中大量(N)的代理商或客户共同(并迭代地)学习在 N 家餐厅中进行选择,她希望当晚独自在那里用餐,并且可以享用那里唯一的菜(或者如果当晚有多个代理商到达那里,可能会随机点菜)。玩家应该进化他们的策略,以便利用有关不同餐厅过去人群的公开信息,并且每个人都能够做出最佳的少数选择。对于同等排名的餐厅,我们遵循两种避人群策略:策略 I,在 t 晚到达第 i 家餐厅的 n(t)个代理中的每个代理都有 n(t)的概率返回同一家餐厅第二天晚上,和策略 II,当 n(t)>1 时,概率为 p。我们研究稳态(t 独立)利用率分数 f:(1-f)给出了任何特定晚上没有任何客户的餐厅的稳态(浪费)分数。对于这两种策略,我们发现,在α接近 0(在策略 I 中)或 p=1(在策略 II 中)时,稳态浪费分数(1-f)∝(α-α)或(p-p),β≃0.8、0.87、1.0,收敛时间 τ[对于 f(t)变得独立于 t]变化为τ∝(α-α)或(p-p),γ≃1.18、1.11、1.05 在无限维度(其余 N-1 个相邻餐厅)、三维(六个邻居)和二维(四个邻居)中。