Maghsoudi Arash, Shalbaf Ahmad
Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.
Department of Biomedical Engineering and Medical Physics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
Basic Clin Neurosci. 2021 Nov-Dec;12(6):817-826. doi: 10.32598/bcn.2021.2034.1. Epub 2021 Nov 1.
Mental arithmetic analysis based on Electroencephalogram (EEG) signals can help understand disorders, such as attention-deficit hyperactivity, dyscalculia, or autism spectrum disorder where the difficulty in learning or understanding the arithmetic exists. Most mental arithmetic recognition systems rely on features of a single channel of EEG; however, the relationships between EEG channels in the form of effective brain connectivity analysis can contain valuable information. This study aims to find distinctive, effective brain connectivity features and create a hierarchical feature selection for effectively classifying mental arithmetic and baseline tasks.
We estimated effective connectivity using Directed Transfer Function (DTF), direct DTF (dDTF) and Generalized Partial Directed Coherence (GPDC) methods. These measures determine the causal relationship between different brain areas. A hierarchical feature subset selection method selects the most significant effective connectivity features. Initially, Kruskal- Wallis test was performed. Consequently, five feature selection algorithms, namely, Support Vector Machine (SVM) method based on Recursive Feature Elimination, Fisher score, mutual information, minimum Redundancy Maximum Relevance (RMR), and concave minimization and SVM are used to select the best discriminative features. Finally, the SVM method was used for classification.
The obtained results indicated that the best EEG classification performance in 29 participants and 60 trials is obtained using GPDC and feature selection via concave minimization method in Beta2 (15-22Hz) frequency band with 89% accuracy.
This new hierarchical automated system could be helpful in the discrimination of mental arithmetic and baseline tasks from EEG signals effectively.
Propose effective connectivity to describe EEG signals during mental arithmetic task.Most significant connectivity features from generalized partial directed coherence method.Hierarchical feature selection from Kruskal-Wallis test and concave minimization method.
Brain analysis methods by Electroencephalogram (EEG) signals provide a suitable method to monitor human brain activity due to having high temporal resolution, being noninvasive, inexpensive, and portable method. Analysis of mental arithmetic based EEG signal is helpful for psychological disorders like dyscalculia where they have learning understanding arithmetic, attention deficit hyperactivity, and autism spectrum disorders with attention deficit problem. This study finds distinctive effective brain connectivity features and creates a hierarchical feature selection for classification of mental arithmetic and baseline tasks effectively. Best EEG classification performance in 29 participants and 60 trials is obtained using Generalized Partial Directed Coherence (GPDC) methods and feature selection via concave minimization method in Beta2 (15-22Hz) frequency band with 89% accuracy. Thus, this new hierarchical automated system is useful for discrimination of mental arithmetic and baseline tasks from EEG signal effectively.
基于脑电图(EEG)信号的心算分析有助于理解诸如注意力缺陷多动障碍、计算障碍或自闭症谱系障碍等存在学习或理解算术困难的疾病。大多数心算识别系统依赖于单通道EEG的特征;然而,以有效脑连接性分析形式存在的EEG通道之间的关系可能包含有价值的信息。本研究旨在找到独特、有效的脑连接性特征,并创建一种分层特征选择方法,以有效地对心算和基线任务进行分类。
我们使用定向传递函数(DTF)、直接DTF(dDTF)和广义部分定向相干(GPDC)方法估计有效连接性。这些测量方法确定不同脑区之间的因果关系。一种分层特征子集选择方法选择最显著的有效连接性特征。首先,进行Kruskal-Wallis检验。随后,使用五种特征选择算法,即基于递归特征消除的支持向量机(SVM)方法、Fisher分数、互信息、最小冗余最大相关性(RMR)以及凹面最小化和SVM来选择最佳判别特征。最后,使用SVM方法进行分类。
所得结果表明,在29名参与者和60次试验中,使用GPDC和通过凹面最小化方法在Beta2(15 - 22Hz)频段进行特征选择时,获得了最佳的EEG分类性能,准确率为89%。
这种新的分层自动化系统有助于从EEG信号中有效区分心算和基线任务。
提出有效连接性以描述心算任务期间的EEG信号。广义部分定向相干方法中最显著的连接性特征。基于Kruskal-Wallis检验和凹面最小化方法的分层特征选择。
脑电图(EEG)信号的脑分析方法因其具有高时间分辨率、非侵入性、成本低且便携等特点,提供了一种监测人类大脑活动的合适方法。基于EEG信号的心算分析有助于对诸如计算障碍等心理疾病的研究,这些疾病患者在学习理解算术、注意力缺陷多动障碍以及患有注意力缺陷问题的自闭症谱系障碍方面存在困难。本研究发现了独特有效的脑连接性特征,并创建了一种分层特征选择方法,以有效地对心算和基线任务进行分类。在29名参与者和60次试验中,使用广义部分定向相干(GPDC)方法和通过凹面最小化方法在Beta2(15 - 22Hz)频段进行特征选择时,获得了最佳的EEG分类性能,准确率为89%。因此,这种新的分层自动化系统有助于从EEG信号中有效区分心算和基线任务。